Operating Manual

contrAA 800
High-Resolution Continuum Source
Atomic Absorption Spectrometer
# Content

1  **Basic information** ........................................................................................................................................... 9  
1.1  User manual notes ........................................................................................................................................... 9  
1.2  Intended use .................................................................................................................................................. 10  
1.3  Warranty and liability ..................................................................................................................................... 10  
2  **Safety instructions** ........................................................................................................................................ 11  
2.1  Safety markings at the device ...................................................................................................................... 11  
2.2  Requirements for the operating personnel .................................................................................................. 14  
2.3  Safety instructions, transport and commissioning ....................................................................................... 14  
2.4  Safety instructions - operation ................................................................................................................... 15  
2.4.1  General .................................................................................................................................................... 15  
2.4.2  Safety instructions relating to ambient conditions ..................................................................................... 15  
2.4.3  Safety instructions - electrical equipment .............................................................................................. 15  
2.4.4  Safety instructions for flame and graphite techniques ............................................................................. 16  
2.4.5  Safety instructions relating to ozone and toxic vapors ........................................................................... 17  
2.4.6  Safety instructions for compressed gas containers and systems ............................................................ 17  
2.4.7  Handling of samples, auxiliary and operating materials ........................................................................... 18  
2.4.8  Decontamination after biological contamination .................................................................................. 19  
2.5  Safety equipment / behavior during emergencies ...................................................................................... 19  
2.6  Safety instructions: service and repair .......................................................................................................... 19  
3  **Installation conditions** ............................................................................................................................... 21  
3.1  Environmental conditions ............................................................................................................................. 21  
3.2  Energy supply ............................................................................................................................................... 21  
3.3  Gas supply .................................................................................................................................................... 22  
3.3.1  Gases in the graphite tube technique ...................................................................................................... 23  
3.3.2  Gases in the flame technique ................................................................................................................ 23  
3.4  Exhaust unit .................................................................................................................................................. 24  
3.5  Device layout and space requirements ....................................................................................................... 24  
4  **Functions and layout** .................................................................................................................................. 29  
4.1  Physical principle of measurement HR-CS AAS .......................................................................................... 29  
4.2  Xenon short arc lamp ..................................................................................................................................... 33  
4.3  Cooling water circuit ..................................................................................................................................... 33  
4.4  Electrothermal atomizer ............................................................................................................................... 34  
4.4.1  Graphite tube furnace ............................................................................................................................. 35  
4.4.2  Gas flows in the furnace jacket ................................................................................................................. 36  
4.4.3  Graphite tube versions, furnace parts and inserts .................................................................................... 38  
4.4.4  Radiation sensor ....................................................................................................................................... 39  
4.4.5  Furnace camera ......................................................................................................................................... 39  
4.5  Accessories for the graphite tube technique ............................................................................................... 40  
4.5.1  Autosampler AS-GF .................................................................................................................................. 40  
4.5.2  Solid samplers SSA 600 and SSA 6z ........................................................................................................ 41  
4.6  Flame system ............................................................................................................................................... 41  
4.6.1  Gas automatic ......................................................................................................................................... 42  
4.6.2  Burner-nebulizer system ......................................................................................................................... 42  
4.6.3  Burner and flame type ............................................................................................................................ 44  
4.6.4  Sensors .................................................................................................................................................... 45  
4.7  Accessories for flame technique .................................................................................................................. 45  
4.7.1  Autosamplers AS-F and AS-FD .............................................................................................................. 45  
4.7.2  Piston compressor PLANET L-550-15 ..................................................................................................... 47  
4.7.3  Injection module SFS 6 ........................................................................................................................ 47  
4.7.4  Scraper – automatic burner head cleaner .............................................................................................. 48  
4.8  Supplementary accessories – hydride systems ............................................................................................ 48  
5  **Installation and commissioning** ................................................................................................................ 49  
5.1  Supply and control connections .................................................................................................................. 49
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Installing the contrAA 800</td>
<td>53</td>
</tr>
<tr>
<td>5.3</td>
<td>Installing and starting ASpect CS</td>
<td>55</td>
</tr>
<tr>
<td>5.4</td>
<td>Graphite tube technique</td>
<td>55</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Connections in the sample chamber for the graphite tube technique</td>
<td>55</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Software presettings for the graphite tube technique</td>
<td>56</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Inserting the graphite tube into the furnace</td>
<td>58</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Formatting the graphite tube</td>
<td>60</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Cleaning / clean out of the graphite tube</td>
<td>61</td>
</tr>
<tr>
<td>5.5</td>
<td>Installing and adjusting the AS-GF autosampler</td>
<td>61</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Installing the autosampler</td>
<td>61</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Adjusting the sampler</td>
<td>64</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Populating the sample tray</td>
<td>65</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Uninstalling the autosampler</td>
<td>65</td>
</tr>
<tr>
<td>5.6</td>
<td>Flame technique</td>
<td>66</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Connections in the sample chamber for the flame technique</td>
<td>66</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Software settings for the flame technique</td>
<td>67</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Installation for manual sample supply</td>
<td>68</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Installation for continuous working mode with autosampler</td>
<td>70</td>
</tr>
<tr>
<td>5.6.5</td>
<td>Installing the injection module SFS 6</td>
<td>74</td>
</tr>
<tr>
<td>5.6.6</td>
<td>Replacing the burner</td>
<td>75</td>
</tr>
<tr>
<td>5.6.7</td>
<td>Installing the scraper</td>
<td>75</td>
</tr>
<tr>
<td>5.7</td>
<td>Commissioning the contrAA 800 with accessories</td>
<td>76</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Switching on sequence</td>
<td>76</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Switching off sequence</td>
<td>76</td>
</tr>
<tr>
<td>6</td>
<td>Service and maintenance</td>
<td>78</td>
</tr>
<tr>
<td>6.1</td>
<td>Maintenance overview</td>
<td>79</td>
</tr>
<tr>
<td>6.2</td>
<td>Base device</td>
<td>81</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Replacing the fuses</td>
<td>81</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Cleaning the sample chamber</td>
<td>82</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Replacing the Xenon short arc lamp</td>
<td>82</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Protection against overheating and uncontrolled furnace heating</td>
<td>88</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Checking the cooling water level and replacing the cooling water</td>
<td>89</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Replacing the air filter</td>
<td>92</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Checking the gas connections for leaks</td>
<td>93</td>
</tr>
<tr>
<td>6.3</td>
<td>Aligning the atomization unit in the beam path</td>
<td>93</td>
</tr>
<tr>
<td>6.4</td>
<td>Graphite tube furnace</td>
<td>95</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Cleaning the furnace windows</td>
<td>95</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Cleaning the graphite surfaces</td>
<td>96</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Cleaning and changing the graphite tube</td>
<td>97</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Replacing the electrodes and furnace jacket</td>
<td>97</td>
</tr>
<tr>
<td>6.5</td>
<td>Burner-nebulizer system</td>
<td>103</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Taking the burner-nebulizer system apart</td>
<td>104</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Cleaning the burner</td>
<td>106</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Cleaning the nebulizer</td>
<td>108</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Cleaning the mixing chamber</td>
<td>108</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Cleaning the siphon</td>
<td>108</td>
</tr>
<tr>
<td>6.5.6</td>
<td>Assembling the burner-nebulizer system</td>
<td>109</td>
</tr>
<tr>
<td>6.5.7</td>
<td>Cleaning the sensor for burner detection</td>
<td>110</td>
</tr>
<tr>
<td>6.6</td>
<td>Autosampler graphite AS-GF</td>
<td>111</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Washing the dosing tube</td>
<td>111</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Servicing the dosing tube</td>
<td>112</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Replacing the dosing syringe</td>
<td>114</td>
</tr>
<tr>
<td>6.6.4</td>
<td>Cleaning the autosampler after cup overflow</td>
<td>115</td>
</tr>
<tr>
<td>6.7</td>
<td>Flame sampler AS-F, AS-FD</td>
<td>116</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Washing the sample paths</td>
<td>116</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Washing the mixing cup of the AS-FD</td>
<td>116</td>
</tr>
<tr>
<td>6.7.3</td>
<td>Replacing the cannulas and guide at the AS-FD</td>
<td>117</td>
</tr>
<tr>
<td>6.7.4</td>
<td>Replacing the cannula at the AS-F</td>
<td>117</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>6.7.5</td>
<td>Replacing the intake tube</td>
<td>117</td>
</tr>
<tr>
<td>6.7.6</td>
<td>Replacing the tube set at the AS-F</td>
<td>118</td>
</tr>
<tr>
<td>6.7.7</td>
<td>Cleaning the autosampler after cup overflow</td>
<td>118</td>
</tr>
<tr>
<td>6.8</td>
<td>Piston compressor PLANET L-S50-15</td>
<td>119</td>
</tr>
<tr>
<td>7</td>
<td>Fault removal</td>
<td>120</td>
</tr>
<tr>
<td>7.1</td>
<td>Fault removal in accordance with software messages</td>
<td>120</td>
</tr>
<tr>
<td>7.2</td>
<td>Equipment faults and analytical problems</td>
<td>122</td>
</tr>
<tr>
<td>8</td>
<td>Transport and storage</td>
<td>124</td>
</tr>
<tr>
<td>8.1</td>
<td>Preparing the contrAA 800 for transport</td>
<td>124</td>
</tr>
<tr>
<td>8.2</td>
<td>Ambient conditions for transport and storage</td>
<td>126</td>
</tr>
<tr>
<td>9</td>
<td>Disposal</td>
<td>127</td>
</tr>
<tr>
<td>10</td>
<td>Specification</td>
<td>128</td>
</tr>
<tr>
<td>10.1</td>
<td>Technical data</td>
<td>128</td>
</tr>
<tr>
<td>10.1.1</td>
<td>contrAA 800 data</td>
<td>128</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Minimum requirements for the control computer</td>
<td>131</td>
</tr>
<tr>
<td>10.1.3</td>
<td>Data for the graphite tube technique</td>
<td>131</td>
</tr>
<tr>
<td>10.1.4</td>
<td>Data for the flame technique</td>
<td>132</td>
</tr>
<tr>
<td>10.1.5</td>
<td>Data for the flame technology accessories</td>
<td>133</td>
</tr>
<tr>
<td>10.2</td>
<td>Guidelines and standards</td>
<td>135</td>
</tr>
<tr>
<td>11</td>
<td>Abbreviations / terminology</td>
<td>136</td>
</tr>
<tr>
<td>12</td>
<td>Index</td>
<td>138</td>
</tr>
</tbody>
</table>
Figures

Fig. 1  Warnings and notice signs at the rear of the device ........................................ 11
Fig. 2  Warnings and notice signs at the front and side panels.................................. 13
Fig. 3  contrAA 800 dimensions – top view (with autosampler AS-GF) .................. 26
Fig. 4  contrAA 800 dimensions – side view .......................................................... 26
Fig. 5  contrAA 800 dimensions – top view (with autosampler AS-FD) .................. 27
Fig. 6  contrAA 800 workspace with exhaust unit.................................................. 28
Fig. 7  principle of measurement of LS AAS and HR-CS AAS ............................... 29
Fig. 8  Sample chamber of the contrAA 800 D .................................................... 30
Fig. 9  Sample chamber of the contrAA 800 F .................................................... 31
Fig. 10 Beam path in the contrAA 800 ................................................................. 32
Fig. 11 Xenon short arc lamp without housing ...................................................... 33
Fig. 12 Graphite tube furnace in the sample chamber .......................................... 34
Fig. 13 Graphite tube furnace, open ...................................................................... 36
Fig. 14 Primary and outer gas flows in the graphite tube furnace ......................... 37
Fig. 15 Graphite tube jacket .................................................................................. 37
Fig. 16 Graphite tube versions .............................................................................. 38
Fig. 17 Furnace jacket, adapters and inserts .......................................................... 38
Fig. 18 Autosampler AS-GF .................................................................................. 40
Fig. 19 Solid autosamplers SSA 600 and SSA 6z .................................................. 41
Fig. 20 Nebulizer mixing-chamber burner-system .............................................. 43
Fig. 21 Mixing chamber and nebulizer, disassembled .......................................... 44
Fig. 22 Burner types ............................................................................................. 45
Fig. 23 Autosampler AS-FD with Fluidik module ............................................... 46
Fig. 24 Injection module SFS 6 ............................................................................ 47
Fig. 25 Scaper an the 50 mm burner head ............................................................ 48
Fig. 26 contrAA 800 – Side view with carrying handles ...................................... 50
Fig. 27 Rear view contrAA 800 D with connections and fuses ......................... 50
Fig. 28 contrAA 800 D and G connection strip ................................................... 51
Fig. 29 contrAA 800 F rear view with connections .............................................. 51
Fig. 30 Connection strip of the contrAA 800 F ..................................................... 52
Fig. 31 Transport lock in the sample chamber of the contrAA 800 D ................. 54
Fig. 32 Cooling water tank in the lamp chamber .................................................. 54
Fig. 33 Elements in the sample chamber for the graphite tube technique ........... 55
Fig. 34 Connections at the graphite tube furnace ................................................ 56
Fig. 35 Window PRECONFIGURATION of ASpect CS ......................................... 57
Fig. 36 Furnace / Control dialog window .............................................................. 58
Fig. 37 Open graphite tube furnace with inserted graphite tube ....................... 59
Fig. 38 AS-GF installed ....................................................................................... 62
Fig. 39 AS-GF with screws for furnace alignment .............................................. 63
Fig. 40 AS-GF adjusted ...................................................................................... 64
Fig. 41 Connections at the sample chamber walls .............................................. 66
Fig. 42 Connections at the burner-nebulizer system .......................................... 67
Fig. 43 Flame technique, manual sample supply ............................................... 68
Fig. 44 Flame technique with autosampler AS-FD and SFS 6 ............................. 70
Fig. 45 Rear of the autosampler AS-FD ............................................................... 72
Fig. 46 Dosing unit at the Fluidik module of the AS-FD .................................... 73
Fig. 47 Installing the SFS 6 for manual sample supply ...................................... 74
Fig. 48 Screws on the front burner jaw ............................................................... 75
Fig. 49 Fastening rail / knurled screws at the scraper ........................................ 76
Fig. 50 Face protection ....................................................................................... 83
Fig. 51 Cooling water tank in the lamp chamber ............................................... 89
Fig. 52  Adjustment screw for aligning the atomization unit ........................................ 94
Fig. 53  Markings at the furnace windows ................................................................. 96
Fig. 54  Electrodes and graphite tube jacket ............................................................ 97
Fig. 55  Furnace tools .............................................................................................. 98
Fig. 56  Burner-nebulizer system ............................................................................ 104
Fig. 57  Mixing chamber and nebulizer disassembled for cleaning ......................... 105
Fig. 58  Withdrawing the nebulizer from the mixing chamber ............................... 105
Fig. 59  Burner screw joints .................................................................................. 107
Fig. 60  Burner, disassembled ............................................................................... 107
Fig. 61  Spacers inserted in burner jaws ................................................................... 108
Fig. 62  Nebulizer components .............................................................................. 110
Fig. 63  Sensor openings for the burner detection ..................................................... 111
Fig. 64  Window AUTOSAMPLER, tab FUNCTION TESTS ..................................... 112
Fig. 65  Window ADJUST SAMPLER .................................................................... 112
Fig. 66  Dosing tube at the AS-GF .......................................................................... 113
Fig. 67  Dosing unit at AS-GF and AS-FD ................................................................. 115
Fig. 68  Installation of the transport lock in the sample chamber ............................ 125
1 Basic information

1.1 User manual notes

The user manual describes the following two models of the contrAA series:

- contrAA 800 D – Combined device for flame and graphite tube techniques
- contrAA 800 F for flame technique
- contrAA 800 G for graphite tube technique

In the text below these devices are collectively called contrAA 800. Differences are explained in the corresponding section. Unless stated differently, the figures show the combined device contrAA 800 D.

The contrAA 800 is intended for operation by qualified specialist personnel observing this user manual.

The user manual informs about the design and function of the contrAA 800 and provides the necessary know-how for the safe handling of the device and its components to personnel familiar with analysis. The user manual further includes notes on the maintenance and service of the equipment and potential causes and remedies of any faults.

Conventions

Instructions for actions which occur in chronological order are numbered and combined in action units.

Warnings are indicated by a warning triangle and signal word. The type, source and consequences of the danger are stated together with notes on preventing the danger.

The elements of the control and analysis program are indicated as follows:

- Program terms are identified with SMALL CAPS (e.g., Menu FILE).
- Buttons are shown by square brackets (e.g., [OK])
- Menu items are separated by arrows (e.g. FILE  OPEN)

Symbols and signal words

The user manual uses the following symbols and signal words to indicate hazards or instructions. The warnings are always placed before an action.

---

**WARNING**

Indicates a potentially hazardous situation which might cause fatal or very serious injuries (deformities).

**CAUTION**

Indicates a potentially hazardous situation which might cause light or minor injuries.

**ATTENTION**

Provides indications of potential material and environmental damage.

---
1.2 Intended use

The contrAA 800 is a high-resolution continuum source atomic absorption spectrometer for flame, hydride and graphite tube techniques. It is suited for the sequential detection of metallic and non-metallic traces in solid, liquid and dissolved samples. Combined with an autosampler the contrAA 800 can be used as a multi-element automatic unit to be used during routine analysis.

The contrAA 800 may only be used for the measurement solutions described in this user manual. Any other use is not as intended! The operator is exclusively liable for any damages as a result.

The contrAA 800 is suited for working with solutions containing hydrofluoric acid. The local safety regulations for handling hydrofluoric acid must be observed. Special provisions must also be made for operations involving organic solvents. In addition to apparatus-related and methodical aspects, fire and health protection for the particular organic solvent must be observed.

1.3 Warranty and liability

The warranty duration and liability comply with the legal requirements and the provisions in the general terms and conditions of Analytik Jena.

Deviations from the intended use described in this user manual result in limitations of warranty and liability during a damage event. Damage to wearing parts is not included in the warranty.

Warranty and liability claims are excluded for personal injury and property damage due to one or several of the following causes:

- use of the contrAA 800 other than intended
- improper commissioning, operation and servicing of the device
- modifications of the equipment without prior consultation with Analytik Jena
- operation of the device with faulty safety equipment or improperly fitted safety and protection equipment
- inadequate monitoring of the equipment components subject to wear
- use of other than original spare parts, wearing parts or consumables
- improper repairs
- faults due to the non-observance of this user manual
2 Safety instructions

For your own safety and to ensure error-free operation of the contrAA 800, please read this chapter carefully before using the appliance.

Observe all safety notes listed in this user manual and all messages and notes displayed by the control and analysis program on the monitor.

Besides the safety instructions in this user manual and the local safety regulations applicable to the operation of the device, the general applicable regulations regarding accident prevention, occupational health and safety and environmental protection must be observed and complied with.

References to potential dangers do not replace the work protection regulations which must be observed.

2.1 Safety markings at the device

Warnings and notice symbols have been attached to the contrAA 800 which must always be observed.

Damaged or missing warnings and notice symbols can cause incorrect actions leading to personal injury or material damage! The symbol labels must not be removed or wetted with methanol! Damaged symbol labels must be replaced without delay!
<table>
<thead>
<tr>
<th>Number</th>
<th>Warning / notice symbol</th>
<th>Meaning and scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 3</td>
<td></td>
<td>Before opening the device hood switch off the device and disconnect the mains plug from the mains connection.</td>
</tr>
<tr>
<td>2</td>
<td>Achtung! Steckdose auch bei ausgeschaltetem AAS-Netzschalter unter Spannung! Bei Anschluss anderer als der vorgeschriebenen Geräte kann der zulässige Ableitstrom überschritten werden. Sicherung auch im N-Leiter! Warning! Voltage on power point also by switched off AAS power switch! Pay close attention to the limit of the admissible current when connecting up individual components. Fuse also in N-Line!</td>
<td>Warning only for contrAA 800 D + contrAA 800 G (For meaning see warning text)</td>
</tr>
<tr>
<td></td>
<td>Achtung! Bei ausgeschaltetem Gerät liegt Netzspannung an! Warning! Unit carries line voltage even if device has been switched off! Vor Öffnen Netzstecker ziehen! Unlock power cable before opening! Zubehöre nur bei ausgeschaltetem Gerät ein- oder ausstecken! Switch off instrument before connecting or disconnecting accessories!</td>
<td>Warning only for contrAA 800 F (For meaning see warning text)</td>
</tr>
<tr>
<td>4</td>
<td>Caution! Disconnect AC line before removing cover. Changing mains fuse only by authorized personnel.</td>
<td>Warning only for contrAA 800 D + contrAA 800 G Before opening the device hood switch off the device and disconnect the mains plug from the mains connection. The main inlet fuses (F1, F2) may only be replaced by Analytic Jena customer service and authorized technical personnel.</td>
</tr>
<tr>
<td>5</td>
<td>Caution! Remove gas-in filter before opening instrument back-side. Achtung! Vor dem Öffnen der Geräte-rückwand Gas-in Filter abschrauben.</td>
<td>(For meaning see warning text)</td>
</tr>
<tr>
<td>6</td>
<td>Vor Öffnen Netzstecker ziehen! Unlock power cable before opening!</td>
<td>Before opening the device hood switch off the device and disconnect the mains plug from the mains connection.</td>
</tr>
</tbody>
</table>
### Warnings and notice signs at the front and side panels

<table>
<thead>
<tr>
<th>Number</th>
<th>Warning / notice symbol</th>
<th>Meaning and scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><img src="image" alt="Warning" /></td>
<td>Read the operating manual before commencing work.</td>
</tr>
<tr>
<td></td>
<td><img src="image" alt="Hot surface" /></td>
<td>Hot surfaces! Risk of burns at the lamp housing!</td>
</tr>
<tr>
<td></td>
<td><img src="image" alt="Ultraviolet light source" /></td>
<td>Dangerous UV radiation! Do not look into the lamp beam without UV protection goggles. Protect your skin against UV radiation.</td>
</tr>
<tr>
<td>2</td>
<td><img src="image" alt="Attention" /></td>
<td>Achtung! Warnung! Attention! Warning! Heiße Oberflächen! Verbrennungsgefahr! Caution! Hot surface! Gefährliche UV-Strahlung! Nicht direkt in Ofenstrahlung / Flamme schauen! Caution! Emission of UV radiation! Kurzschlussgefahr! Bedienung mit Schmuck verboten! Danger of short circuit! Handling with jewels not allowed!</td>
</tr>
<tr>
<td></td>
<td><img src="image" alt="Short circuit" /></td>
<td>Short circuit warning only applicable to contrAA 800 D + G!</td>
</tr>
<tr>
<td>3</td>
<td><img src="image" alt="Warning" /></td>
<td>Read the operating manual before commencing work.</td>
</tr>
</tbody>
</table>

Fig. 2   Warnings and notice signs at the front and side panels

Device front and side panels
### 2.2 Requirements for the operating personnel

The contrAA 800 must only be operated by qualified specialist personnel instructed in the use of the device. The instruction must also include conveying the content of this user manual and the user manuals of other system components (e.g. solids sampler).

In addition to the safety at work instructions in this user manual the generally applicable safety and accident prevention regulations of the respective country of operation must be observed and adhered to. The operator must ascertain the latest version of these regulations.

The user manual must be accessible to the operating and service personnel at any time!

### 2.3 Safety instructions, transport and commissioning

Observe the following notes:

- The contrAA 800 is always installed by the customer service department of Analytik Jena or its authorized and trained specialist personnel. Independent assembly and installation are not permitted. Incorrect installation can create serious hazards.
- The various models of the contrAA 800 device family weigh between 140 and 170 kg. Use a lift truck for transport.
- Four people are required to move the device in the laboratory by holding the device on four firmly screwed-in carrying handles.

<table>
<thead>
<tr>
<th>Number</th>
<th>Warning / notice symbol</th>
<th>Meaning and scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>– (on height adjustment)</td>
<td>![Warning Symbol]</td>
<td>Hot surfaces! Risk of burns at the hot graphite tube furnace and burner!</td>
</tr>
<tr>
<td>– (Terminal strip)</td>
<td>![Warning Symbol]</td>
<td>Zubehör nur bei ausgeschaltetem Gerät ein- oder ausstecken! Switch off instrument before connecting or disconnecting accessories! (For meaning see warning text)</td>
</tr>
<tr>
<td>– (left side panel)</td>
<td>![Warning Symbol]</td>
<td>Before opening the cover switch off the device and disconnect the mains plug from the mains connection.</td>
</tr>
</tbody>
</table>
2.4 Safety instructions - operation

2.4.1 General

Observe the following notes:

- The operator of the contrAA 800 must make sure before each commissioning that the condition of the device including the safety equipment is sound. This applies in particular after each modification or extension of the device or its repair.

- The device must only be operated if all protective equipment (e.g. covers and doors) are in place, properly installed and fully operational. The sound condition of the protection and safety equipment must be checked regularly. Any defects must be corrected as soon as they occur. Protective and safety equipment must never be removed, modified or decommissioned during operation.

- During operation unobstructed access to the connection at the rear of the device and the mains switch on the ride device panel must always be ensured.

- The ventilation equipment on the device must be in good working condition. Covered ventilation grilles or slits etc. may cause the device to break down or may cause damage to it.

- Prevent any liquids from entering the inside of the instrument. The liquids might get into contact with electronic components and cause a short circuit.

- Caution when handing quartz glass and glass parts. Risk of broken glass and therefore risk of injury!

2.4.2 Safety instructions relating to ambient conditions

- The contrAA 800 may not be operated in hazardous areas. Smoking or open flames in the operating room of the contrAA 800 are prohibited! Keep all combustible materials away from the device.

2.4.3 Safety instructions - electrical equipment

Work on the electrical components of the contrAA 800 may only be performed by a qualified electrical technician according to applicable electro-technical regulations. Lethal voltages may occur in the device! Contact with live components may cause death, serious injury or painful electrical shock.

Observe the following notes:

- The mains plug must be connected to a proper CEE power socket to ensure that the device meets protection class I (ground connector). The device may only be connected to power sources whose nominal voltage is the same as that on the nameplate of the equipment. The protective effect must not be invalidated by the use of an extension line which does not have a protective conductor.

- The contrAA 800 and its system components must always be switched off before being connected to the mains.

- Before opening the device, it must be switched off at the device switch and the mains connector must be disconnected from the mains outlet! Any work on the
2.4.4 Safety instructions for flame and graphite techniques

- The Xenon short arc lamp and the frame radiate highly intensive light in the visible and UV range. Do not look into the beam of the Xenon short arc lamp or the flame without UV protection glasses. Protect your skin against UV radiation. Never insert a handheld mirror into the beam path e.g. to monitor the drying of liquid samples in the graphite tube furnace. There is a danger of UV radiation being reflected.

- In flame mode, only allow the flame to burn with the sample chamber door locked (safety glass) and not without supervision. Ensure the functionality of the flame guard.

- In hydride technique only work with the sample chamber door locked.

- Danger of UV radiation being reflected! Modifications and maintenance in the sample chamber may maladjust the atomization unit. The maladjustment of the atomization unit may result in UV radiation emerging from the sample chamber.

  In the contrAA 800 D the atomization unit is automatically adjusted prior to each measurement start. If the atomization unit is maladjusted during an ongoing measurement, e.g. by an impact, stop and restart the measurement.

  Check the alignment of the atomization unit in the contrAA 800 F. If necessary, realign the atomization unit in the beam path using the adjustment screw (→ section "Aligning the atomization unit in the beam path" p.93).

  Only a few interventions are required in the graphite tube furnace of the contrAA 800 G. The risk of maladjustment is thus precluded.

- High temperatures develop in flame and graphite tube mode. Do not touch hot components, such as the burner head or the Xenon short arc lamp during or immediately after a measurement. Observe the required cooling times.

- The fuel pressure must not drop below 70 kPa to prevent flame backfire. The internal pressure monitor automatically shuts down the contrAA 800 if this condition is not met. Additionally, monitor the pressure at the gas supply manometer.

- When using the graphite tube technique, do not look into the graphite tube opening without protective goggles. Sputtering sample substances and hot graphite particles may cause eye and face injuries.

- No (metallic) jewelry, in particular necklaces, may be worn when working at the contrAA 800 D and G. Otherwise there is a danger of causing a short circuit of the electrically heated graphite tube. Jewelry may also get excessively hot and cause burns.

- Electromagnetic dispersion fields with flux densities ≤ 100 µT occur in the vicinity of the sample chamber due to the heating of the graphite tube.

- The sound level in the graphite tube technique may be up to 55 dBA. If the nitrous oxide/acetylene flame blows back into the mixing chamber, the momentary sound level is below 130 dBA.
2.4.5 Safety instructions relating to ozone and toxic vapors

The UV radiation of the Xenon short arc lamp and the cathode lamps (HCL, D2E) and the nitrous oxide burner flame lead to an interaction with the surrounding air to form high concentrations of ozone. Additionally, toxic byproducts may escape from the samples and during sample processing.

Observe the following notes:
- The contrAA 800 may only be operated with an active exhaust unit.

2.4.6 Safety instructions for compressed gas containers and systems

Observe the following notes:
- The operating gases (argon, acetylene and nitrous oxide) are obtained from compressed gas containers or local liquid gas systems. The required purity of the gases must be ensured.
- Pure oxygen or oxygen-enriched air may not be used as an oxidant in the flame technique. There is a risk of explosion.
- Work on compressed gas containers and systems must only be carried out by individuals with specialist knowledge and experience in compressed gas systems.
- For gas cylinder or gas plant operation, the safety instructions and guidelines which are valid at the operating location must be strictly complied with.
- High pressure tubing and pressure reducers may only be used for the assigned gases. All pipes, hoses and screw connections must be checked weekly for leaks and externally visible damage. Possible pressure losses from closed systems and lines under pressure must be determined. Leaks and damaged must be repaired without delay.
- Incoming piping, screwed joints and pressure reducers for nitrous oxide (N₂O) must be kept free of grease.
- Caution should be taken with escaping acetylene! Acetylene forms highly flammable mixtures with air. The gas is clearly distinguishable from its garlic-like odor.
- Operate the acetylene cylinder only in an upright position and secured against falling over. When the cylinder pressure is lower than 100 kPa, the acetylene cylinder must be replaced to avoid acetone entering the automatic gas control.
- The operator must carry out weekly safety checks regarding the status and for leaks on all gas supplies and connectors up as far as the device itself. Possible pressure losses from closed systems and lines under pressure are to be determined. Leaks and damaged must be repaired without delay.
- The gas supply must be closed prior to servicing and repairs!
- After successful repair and service of the components of the compressed air containers or system the device must be checked for sound operation prior to recommissioning!
- Independent assembly and installation are not permitted!
2.4.7 Handling of samples, auxiliary and operating materials

Observe the following notes:

- The operator is responsible for the selection of substances used in the process as well as for their safe handling. This is particularly important for radioactive, infectious, poisonous, corrosive, combustible, explosive and otherwise dangerous substances.

- When handling dangerous substances local safety codes and guidelines must be observed.

- Warnings on the labels must always be observed. Only use labeled containers. Use suitable body protection (coat, safety glasses and rubber gloves) when handling samples, auxiliary and operating materials. Ensure sufficient ventilation.

- High temperatures develop in flame and graphite tube mode. Do not move flammable and explosive substances close to hot components, such as the burner head or the Xenon short arc lamp.

- Cleaning with hydrofluoric acid must be carried out in an exhaust chamber. When handling hydrofluoric acid rubber aprons, gloves and face masks must be worn.

- Biological samples must be handled according to local guidelines regarding the handling of infectious material.

- When measuring material containing cyanide you have to make sure that prussic acid cannot be generated in the waste bottle, i.e. the waste solution must not be acidic.

- Ensure that all residue liquid from the nebulizer and the automatic sampler is directed into the collection bottle supplied.

- The operator is responsible for ensuring that waste materials such as drained coolant, compressor filter residue or residue liquid from the collection bottle are disposed of in an environmentally responsible manner and according to local regulations.

Special care is required when handling organic solvents. Prior to use the safety data sheet must be reviewed for potential risks.

<table>
<thead>
<tr>
<th>Organic solvents</th>
<th>Potential risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl isobutyl ketone (MIBK)</td>
<td>Flammable, highly volatile, noxious-smelling</td>
</tr>
<tr>
<td>Toluene</td>
<td>Flammable, hazardous to health</td>
</tr>
<tr>
<td>Kerosene</td>
<td>Flammable, hazardous to the aquatic environment, hazardous to health</td>
</tr>
<tr>
<td>Methanol, ethanol, propanol</td>
<td>Flammable, partly acutely toxic</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>flammable, hazardous to health, extremely volatile, dissolves polyethylene and polystyrene</td>
</tr>
</tbody>
</table>

The above list is in so far incomplete that other solvents might also be used in the contrAA 800. If uncertain about the risk potential, consult the manufacturer.
2.4.8 Decontamination after biological contamination

Observe the following notes:

- The operator is responsible for carrying out suitable decontamination should the device be contaminated externally or internally with dangerous substances.
- Spots, drops or larger spillages should be removed and cleaned using an absorbent material such as cotton wool, laboratory wipes or cellulose. Next wipe the affected areas with a suitable disinfectant, e.g. Incidin Plus solution.
- Before using a cleaning or decontamination procedure other than that prescribed by the manufacturer, the user is required to check with the manufacturer that the intended procedure will not damage the device.

2.5 Safety equipment / behavior during emergencies

Observe the following notes:

- If there is no immediate danger of injury, during emergency situations or incidents, shut down the contrAA 800 without delay from the mains switch at the right side panel.
- Disconnect the mains plug from the mains outlet.
  In the contrAA 800 F disconnect the 5-way socket (with the connections for AAS and accessories) from the mains outlet.
- Close the gas supply as soon as possible after switching off the device.

2.6 Safety instructions: service and repair

Observe the following notes:

- The contrAA 800 is usually serviced by the customer service department of Analytik Jena or its authorized and trained specialist personnel. Independent servicing can maladjust or damage the device. The operator may generally only carry out the tasks listed in chapter “Service and maintenance” p. 78ff.
- In the quartz bulb of the Xenon short arc lamp there is an overpressure of 1.5-1.6 MPa which may rise to up to 7 MPa during operation! The quartz bulb might burst during service and disposal. Switch off the contrAA 800 from the mains switch and disconnect it from the mains prior to servicing. Only handle the quartz bulb in its safety packaging. Analytik Jena recommends wearing face protection during the lamp replacement.
  Insert the new Xenon short arc lamp in accordance with specifications in the correct direction and with the correct polarity. Do not allow moisture to enter the lamp housing. Only operate the lamp once it has been inserted into the lamp chamber. Dispose of used bulbs in accordance with the national regulations for high pressure lamps (short arc lamp), paying attention to the packing label supplied. Do not dispose in domestic waste! For queries about disposal please contact the Analytik Jena customer service.
- The exterior of the contrAA 800 may only be cleaned with a damp, not dripping, cloth. Use only water and, if required, customary surfactants.
- For cleaning the sample compartment and transport channels (hose system) of the contrAA 8000 the operator is responsible for establishing appropriate safety precautions – particularly in terms of contaminated and infectious materials.

- If water or other liquids are found to leak out of the instrument, contact the service engineers.

- Clean all device components from biologically hazardous, chemical and radioactive contamination before returning the device to Analytik Jena AG. Copy the decontamination certificate in your product folder. Or you can download the decontamination declaration as an editable PDF document in German or English from the Internet:
  http://www.biometra.de/index.php/equipment-decontamination.html
  Complete the form and attach the signed decontamination declaration to the outside of the shipment.
3 Installation conditions

3.1 Environmental conditions

The contrAA 800 may only be operated in closed rooms. The location must have the appearance of a chemical laboratory. The location must meet the following conditions:

- It must be devoid of dust, drafts, vibrations and caustic fumes.
- Do not place the contrAA 800 near sources of electromagnetic interference.
- Avoid direct sunlight and heater radiation on the contrAA 800. In extreme cases, provide acclimatized conditions in the room.
- A separate room is recommended for sample preparation and storing chemicals.

The following requirements are placed on the climatic conditions in the operating room of the contrAA 800:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range</td>
<td>+5 °C to +40 °C</td>
</tr>
<tr>
<td>Max. humidity:</td>
<td>90% at 40 °C</td>
</tr>
<tr>
<td>Air pressure</td>
<td>0.7 bar to 1.06 bar</td>
</tr>
<tr>
<td>Max. permissible altitude</td>
<td>2000 m</td>
</tr>
</tbody>
</table>

The requirements for the environmental conditions are identical for the operation and the storage of the contrAA 800.

3.2 Energy supply

**WARNING**

Observe the mains connection!

During electrical installation, observe the VDE (German Association for Electrical Engineers) electrotechnical guidelines and local regulation requirements! The mains supply must be correctly earthed. Do not use an adapter in the mains cabling.

The models contrAA 800 D and contrAA 800 G are operated from a single phase alternating current mains. The current load can reach 85 A for a short period (1 s) during maximum heating. The mains voltage at the contrAA 800 should not decrease by more than 6 % during this period. For any deviation from these values, please contact Analytik Jena AG. Appropriate accessories can be supplied.

Optimum device function strongly depends on a correct mains connection with adequate cable cross-section. The mains connection shall be protected on the input (building) side with a 35 A slow-blow fuse and must be installed prior to delivery of the contrAA 800 near the installation location. The instrument cable is 3 m long. The CEE surface socket (2 pole + E Blue 5UR 3 206-2 220/32, Siemens) is supplied according to the terms of delivery.

All other components (e.g. PC, hydride system etc.) are connected via the 5-way socket strip supplied, which is plugged into the rear of the contrAA 800 D and G and connected to the same phase as the base device itself. If you use your own PC-printer...
installation conditions

ContrAA 800

Configuration, and if it is connected via the 5-way adapter, please observe the limit of the permitted line current. To avoid sudden voltage fluctuations, do not connect the ContrAA 800 to the same electrical circuit as other power-intensive devices.

### Connection conditions

<table>
<thead>
<tr>
<th><strong>Voltage</strong></th>
<th>230 V ~ or different if specified in conditions and terms of supply</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Frequency</strong></td>
<td>50 / 60 Hz or different if specified in conditions and terms of supply</td>
</tr>
<tr>
<td><strong>Typical average power consumption</strong></td>
<td>2100 VA</td>
</tr>
<tr>
<td><strong>Maximum current consumption</strong></td>
<td>85 A over a 1-sec period or 52 A over 8 s</td>
</tr>
<tr>
<td><strong>Fuse provided (mains side)</strong></td>
<td>35 A, safety fuse, slow blow, single phased</td>
</tr>
<tr>
<td>Do not use automatic fuse devices!</td>
<td></td>
</tr>
<tr>
<td><strong>Power consumption of the hydride system</strong></td>
<td>650 VA while heating the cell</td>
</tr>
<tr>
<td>400 VA in continuous operation</td>
<td></td>
</tr>
</tbody>
</table>

**ContrAA 800 F**

The ContrAA 800 F is operated from a single phase alternating current mains. Optimum device function strongly depends on a correct mains connection with adequate cable cross-section. The mains connection must be protected with a 16 A slow blow fuse in the building. The instrument cable is 2 m long.

All other components (e.g. PC, hydride system etc.) are connected via the 5-way socket strip supplied to the same phase as the base device. If you use your own PC-printer configuration, and if it is connected via the 5-way socket strip, please observe the limit of the permitted line current. To avoid sudden voltage fluctuations, do not connect the ContrAA 800 to the same electrical circuit as other power-intensive devices.

### Connection conditions

<table>
<thead>
<tr>
<th><strong>Voltage</strong></th>
<th>100-240 V ~ or different if specified in conditions and terms of supply</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Frequency</strong></td>
<td>50 / 60 Hz or different if specified in conditions and terms of supply</td>
</tr>
<tr>
<td><strong>Typical average power consumption</strong></td>
<td>460 VA</td>
</tr>
<tr>
<td><strong>Fuse provided (mains side)</strong></td>
<td>16 A single phase</td>
</tr>
<tr>
<td><strong>Power consumption of the hydride system</strong></td>
<td>650 VA while heating the cell</td>
</tr>
<tr>
<td>400 VA in continuous operation</td>
<td></td>
</tr>
</tbody>
</table>

### 3.3 Gas supply

**WARNING**

Explosion hazard from escaping acetylene! Danger of a low oxygen atmosphere developing due to escaping gas!

The operator must ensure that the connector type used on the outlet side of the gas pressure controller is adequate for the national requirements that shall apply.

The operator must carry out the necessary safety leakage tests weekly on all gas supplies up as far as the device. For this, possible pressure losses from closed systems...
and lines under pressure are to be determined. The leak is to be localized and corrected immediately.

If the gas is supplied by pressure cylinders, these must be secured to the wall in an upright position with cylinder mounts outside the laboratory space.

3.3.1 Gases in the graphite tube technique

The inert gas argon is used to protect the graphite components of the atomizer, which are subjected to extreme temperatures. The inert gas is also used as a means of transport for the pyrolysis components accrued during the analysis. The purity of the inert gas is extremely important for the analysis and for the lifetime of the graphite tube.

By the introduction of an additional gas during the pyrolysis step (e.g. compressed air), the ashing of the sample, i.e. the removal of the matrix components, can be accelerated. The auxiliary gas is fed in through the “Gas Auxiliary” connection (5 in Fig. 28 p.51) on the rear of the device.

The inlet pressure to the spectrometer must be between 6 and 7 bar (600-700 kPa).

The required pressure reducing valve for the argon gas cylinder, and the argon pressure tubing are supplied. The standard hose length is 5 m. If other hose lengths are preferred, please contact the customer service of Analytik Jena.

<table>
<thead>
<tr>
<th>Recommended inert gas</th>
<th>Inlet pressure</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argon 4.8 or superior</td>
<td>6-7 bar</td>
<td>max. 2 L/min (depending on the temperature/time program)</td>
</tr>
<tr>
<td>Permitted components:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>≤ 3 ppm</td>
<td></td>
</tr>
<tr>
<td>Nitrogen</td>
<td>≤ 10 ppm</td>
<td></td>
</tr>
<tr>
<td>Hydrocarbon</td>
<td>≤ 0.5 ppm</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>≤ 5 ppm</td>
<td></td>
</tr>
<tr>
<td>Additive gas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressed air, oil-free,</td>
<td>6-7 bar</td>
<td></td>
</tr>
<tr>
<td>grease-free, particle-free</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3.2 Gases in the flame technique

For the flame technique, oxidants (compressed air or nitrous oxide) as well as acetylene are required as fuel. The purity of the gases is of decisive importance for the analysis. For the compressed air supply the piston compressor PLANET L-550-15 is available. If compressed air is supplied by the operator’s own compressed air connection, please consult the customer service of Analytik Jena. Nitrous oxide and acetylene is supplied by pressure cylinders or by an existing mains line.

The pressure tubes are supplied. The pressure reducing valves are optional.

- Hose length for cylinder connection 5 m
- Hose length for compressor 5 m

It is also possible to connect other tube lengths. Please consult the customer service of Analytik Jena.
### Fuel gas and oxidant

<table>
<thead>
<tr>
<th>Fuel gas and oxidant</th>
<th>Inlet pressure</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed air, oil-free, grease-free, particle-free</td>
<td>4-6 bar (± 400-600 kPa)</td>
<td>Max. 825 NL/h</td>
</tr>
<tr>
<td>N₂O, oil-free, grease-free, purity 2.5</td>
<td>4-6 bar (± 400-600 kPa)</td>
<td>Max. 660 NL/h</td>
</tr>
<tr>
<td>Acetylene</td>
<td>0.8-1.6 bar (± 80-160 kPa)</td>
<td>Max. 315 NL/h</td>
</tr>
</tbody>
</table>

#### 3.4 Exhaust unit

**CAUTION**

Risk of gas poisoning!

Switch on the exhaust unit before switching on the contrAA 800. Direct waste air out of the laboratory and avoid blockages!

The exhaust unit should remove health-damaging burning residues from the flame as well as ozone. Ozone is caused by the reaction of air and UV radiation from the Xenon short arc lamp and the burner flame. Use an exhaust unit made of heat and corrosion-resistant material. The first 6 m of the exhaust unit should be made of metal.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Heat and corrosion resistant (recommended: V2A steel)</td>
</tr>
<tr>
<td>Exhaust performance for nitrous oxide flame</td>
<td>Approx. 8 to 10 m³/min</td>
</tr>
<tr>
<td>Exhaust performance for air flame</td>
<td>Approx. 5 m³/min</td>
</tr>
<tr>
<td>Hood opening</td>
<td>Approx. 300 × 300 mm</td>
</tr>
<tr>
<td>Distance to the upper edge of the device</td>
<td>Approx. 200 to 300 mm</td>
</tr>
<tr>
<td>Tube diameter</td>
<td>Approx. 100 to 120 mm</td>
</tr>
</tbody>
</table>

#### 3.5 Device layout and space requirements

The contrAA 800 is a compact device designed for table-top operation. The required space depends on the number of components needed for measurement. A minimum distance of 15 cm from the device and system components to walls and adjacent installations must be maintained.

The PC with the monitor, the printer and the keyboard are arranged beside the base device. PC and printer may also be placed on a separate table.
Arrange the workbench to allow easy access from all sides. In addition, the workbench must meet the following requirements:

- Minimum dimensions: 1800 mm × 700 mm, select the height according to ergonomic requirements
- Load capacity of the workbench: min. 200 kg
- Table tops resistant to wiping, scraping and corrosion, water-repellent

The samplers for the flame mode AS-F or AS-FD are hung in the sample chamber of the contrAA 800. The storage bottle for wash liquid of the AS-F or the Fluidik module of the AS-FD are placed next to the AAS device.

The accessories for the graphite tube technique are also suspended in the sample chamber: Autosampler AS-GF for dissolved samples or Solid Autosampler SSA 6 or SSA 600.

The accessories for the hydride technique (e.g. HS 60 modular) are placed on an additional table in front of the contrAA 800.

The following are located on the floor near the device:
- the collection bottle for sample liquid residue, autosampler wash liquid residue and residue liquid of the hydride system
- the piston compressor PLANET L-S50-15 (flame technique only)

<table>
<thead>
<tr>
<th>Components</th>
<th>Width [mm]</th>
<th>Height [mm]</th>
<th>Depth [mm]</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the workbench</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>contrAA 800</td>
<td>780</td>
<td>625</td>
<td>775</td>
<td>D: 170</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G: 170</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F: 140</td>
</tr>
<tr>
<td>AS-GF</td>
<td>250</td>
<td>550</td>
<td>380</td>
<td>7.2</td>
</tr>
<tr>
<td>AS-F</td>
<td>340</td>
<td>350</td>
<td>460</td>
<td>6.5</td>
</tr>
<tr>
<td>AS-FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampler</td>
<td>340</td>
<td>350</td>
<td>460</td>
<td>6.5</td>
</tr>
<tr>
<td>Fluidik module</td>
<td>360</td>
<td>310</td>
<td>165</td>
<td>3.5</td>
</tr>
<tr>
<td>HS 60 modular</td>
<td>360</td>
<td>370</td>
<td>240</td>
<td>14</td>
</tr>
<tr>
<td>HS 55 modular</td>
<td>360</td>
<td>370</td>
<td>240</td>
<td>14</td>
</tr>
<tr>
<td>HS 50</td>
<td>270</td>
<td>210</td>
<td>190</td>
<td>2</td>
</tr>
<tr>
<td>Under the workbench</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressor PLANET L-S50-15</td>
<td>Ø 400</td>
<td>490</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>Waste bottle</td>
<td>Ø 200</td>
<td>400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 3 contrAA 800 dimensions – top view (with autosampler AS-GF)

Fig. 4 contrAA 800 dimensions – side view
Fig. 5  contrAA 800 dimensions – top view (with autosampler AS-FD)
Fig. 6 contrAA 800 workspace with exhaust unit
4 Functions and layout

4.1 Physical principle of measurement HR-CS AAS

The principle of measurement of the High Resolution Continuum Source Atomic Absorption spectrometry (HR-CS AAS) as well as the classic line radiator AAS (LS AAS) is the absorption of a primary radiation by analyte atoms in the basic state. In this, the absorption signal is a measure for the concentration of the relevant element in the analyzed sample.

Each AAS device consists of the following basic components:

- Radiation source
- Atomizer
- Monochromator
- Detector
- Evaluation unit (PC)

In the HR-CS AAS the element-specific radiation source of the classic LS AAS (hollow cathode lamp, HCL) has been replaced with a single continuous radiator for all elements and lines – a Xenon short arc lamp. With the special electrode geometry and the characteristic internal pressure of the Xenon short arc lamp a hot spot is formed that guarantees a radiation temperature of approx. 12,000 Kelvin and a seamless emission across the entire spectral range (185 nm - 900 nm). Sufficient radiation energy is therefore available at any time for all analysis lines of interest – both at the resonance wavelengths of the analysis elements and at all secondary wavelengths. Restrictions due to the specifics of HCL, such as outlet windows and emission intensity, do not apply. In addition absorption lines or bands of two-atom molecules (PO, CS, ...) can be utilized analytically for element detection.
The following atomizer techniques are intended for the various models of the contrAA 800 device family:

<table>
<thead>
<tr>
<th>Atomizing technique</th>
<th>contrAA 800 F</th>
<th>contrAA 800 G</th>
<th>contrAA 800 D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burner/nebulizer system (flame technique)</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Transverse-heated graphite tube</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cell unit (hydride and mercury cold vapor technique)</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Transverse-heated graphite tube with Ir/Au coating (HydrEA technique)</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

The graphite tube atomizer and the burner/nebulizer system (BNS) are located in a single sample chamber in the combination unit contrAA 800 D. The change of atomizing technique and its alignment in the beam path are software-controlled. Thanks to the motorized swivel arm not device conversion is required. Only some accessories need to be removed prior to the change.

![Fig. 8 Sample chamber of the contrAA 800 D](image)

The contrAA 800 F (flame) and contrAA 800 G (graphite) only have one atomizer each. The height of the atomization technique can be aligned in the beam path through software control. The depth has been adjusted at factory and can be manually readjusted using an adjustment screw or adapted to different accessories.
The cell unit of the hydride systems is placed onto the mixing chamber instead of the burner in the contrAA 800 D and F.

Alternatively, the hydride technique can be coupled to the graphite tube technique in the combination unit contrAA 800 D and the contrAA 800 G. They hydrEA technique ("Hydride technique with electrothermal Atomization") is based on the metal hydrides or mercury vapor being enriched on the iridium or gold coated preheated graphite tube and atomized at 2100 °C (metal hydride) or 800 °C (mercury). This achieves a very high sensitivity.

Finally, the models of the contrAA 800 device family with graphite tube technique (contrAA 800 D and G) are also suited for direct solids analysis in combination with the special solids samplers SSA 6z or SSA 600. By detecting the trace elements directly in the solid sample, the time-consuming and contaminating sample digestion representing the major error source in solution analysis is eliminated.

The selectivity of analysis is implemented by the high-resolution double monochromator on the basis of a prism and an echelle grating monochromator (High-Resolution Optics). This achieves a very compact design and a high spectral resolution which corresponds to a spectral resolution of < 2 pm per pixel at 200 nm. The monochromator uses an integrated neon radiator for wavelength stabilization. The spectrometer has been calibrated for air and the selectable argon optics rinse and ensures high reproducibility when approaching a wavelength. During operation the prism is also automatically recalibrated with the aid of a swivel mercury cell at a wavelength of 253 nm. The integrated prism calibration contributes to the high wavelength stability of the spectrometer.

The operator can flush the entire optics of the contrAA 800 software-controlled with argon or air. Flushing with argon increases the sensitivity of the analysis system in the UV range at wavelengths $\lambda < 200$ nm. Here, the detection of elementary lines is interfered with by the wide molecule bands of oxygen. Argon flushing improves in particular the detection of the elements arsenic and selenium. Oxygen flushing of the spectrometer is recommended for working in dusty environments, such as prevalent in a mine. The dispersion of the radiation by solid particles can be significantly reduced by flushing.
A low noise, UV-sensitive semiconductor detector (CCD matrix detector) is located at the exit slit of the monochromator. This detector not only registers the intensity of the analysis line, but also its spectral neighborhood in a preselectable pixel range. In this way, a spectral range of up to 1 nm in the vicinity of the analysis line is detected simultaneously and at a high resolution.

Background correction is either through polynom forming across selected support points or optimized filter functions (IBC). The user can select the support points directly. However, by default they are selected automatically by the software. A special algorithm calculates the support points dynamically for each spectrum and approximates the baseline as precisely as possible to the actual baseline at the measuring pixel. A multivariate method automatically corrects overlaps of the analysis wavelength and finely structured background. To this end reference spectra are used for matrix components to adapt the polynom-forming "least squares". The spectrum is then corrected with the aid of adjacent spectral lines of the interfering elements located in the observation width of the detector (e.g. correction of the spectral interference of Fe on the analysis wavelength of Zn at 213 nm or Se at 196 nm).

The available background correction methods immediately remove all wide-band effects and lamp drift from the spectrum. This implements a simultaneous two-beam system with only one optical path. The measuring signals are clearly more stable than in the classic LS AAS. With sensitivity comparable to that of the LS AAS the contrAA 800 further achieves a significantly improved signal/noise ratio and thus lower verification and detection limits. The extremely low noise CCD matrix detector and very high radiation intensity of the high energy Xenon short arc lamp prove to be most beneficial.
4.2 Xenon short arc lamp

The contrAA 800 features a Xenon short arc lamp as continuous radiator. With its special electrode geometry and physical-technical parameters a hot spot forms to emit a high radiation intensity across the entire spectral range relevant for AAS of 185-900 nm.

During the analysis the position of the hot spot is controlled and adjusted automatically. No warm-up effects due to lamp drift are therefore expected. Any drift of the Xenon short arc lamp is simultaneously removed from the spectra by calculation using correction pixel referencing.

The lamp bulb of the Xenon short arc lamp can be replaced directly by the customer at the end of its service life (→ section “Service and maintenance” p.78). A replacement of the complete lamp unit including housing is not required.

Fig. 11 Xenon short arc lamp without housing

4.3 Cooling water circuit

A low maintenance cooling system is integrated in the spectrometer for heat dissipation from the Xenon short arc lamp and graphite tube furnace. It is based on the water/air heat exchange principle and can be operated with tap water (with additives for frost protection and biocide). The pump starts automatically as soon as water is present in the system. Elaborate venting is not necessary.

The temperature of the cooling water circuit is measured using two safety circuits. These prevent temperature-sensitive components from overheating. The cooling water flow is monitored to prevent the pump from running dry.

The pump is coupled directly to the cooling water tank. The complete unit consisting of pump and tank can be removed easily from the lamp chamber for maintenance.
4.4 Electrothermal atomizer

The electrothermal atomizer (EA) is an integral part of the contrAA models contrAA 800 G and D and the key component for working in EA mode and the HydrEA technique.

The furnace system is equipped with a graphite tube, which is heated through contact pieces aligned transversely to the tube jacket. The transversely heated graphite tube serves as atomizer for the liquid sample injected by means of the autosampler AS-GF or the sample carrier populated with a small solid sample volume supplied via the solid sampler. The graphite tube is moved to the desired temperature in the furnace by a microprocessor-controlled resistance heating.

Fig. 12 Graphite tube furnace in the sample chamber

1 Furnace jaws with electrodes
2 Furnace window
3 Cooling water connections: red hoses
4 Gas connections: white and black hoses
5 Position adjustment
6 High voltage cable
7 Sensor connection for cooling water temperature
8 Fuse at the graphite tube furnace
9 Illumination for furnace camera
10 Radiation sensor
11 Dosing opening with graphite funnel insert
Graphite tube furnace characteristics

- Constant temperature ratios along the entire tube length
- Realization of linear temperature-time runs according to a sensorless control model on the basis of saved thermoelectrical parameters and an adaptive control
- Protective gas flows, independent of each other and symmetrical to the furnace center, which ensure effective graphite tube and furnace window cleaning, and which also ensure fast and safe transport of the thermally disintegrated products of the sample for disposal
- Low consumption of protective gas, at the same time ensuring effective protection against interference with atmospheric oxygen.

In combination with the background correction the graphite tube technology achieves high selectivity and sensitivity allowing for traces and ultra-traces to be detected even in samples with complicated matrix.

In the analysis, each sample runs through a furnace program (temperature-time program). The furnace program consists of four basic steps:

- Drying the sample
- Thermal pretreatment, separating (ashing or pyrolysis of) distorting sample incidental substances (matrix)
- Atomizing the sample
- Cleaning the graphite tube and preparing for the next measurement

The operator can optimize these basic steps for each analysis problem with the ASpect LS control software.

4.4.1 Graphite tube furnace

The height of the graphite tube furnace is automatically adjustable to position the graphite tube optimally within the beam path. In the combination unit contrAA 800 D the graphite tube can also be aligned in depth with the beam path through software control. In the contrAA 800 G the depth of the graphite tube furnace is set at factory but can be readjusted manually via an adjustment screw.

The transversely heated graphite tube is pneumatically pushed and held against the ring-shaped electrodes. The electrodes are installed in two water-cooled metal bodies, the fixed and the movable furnace parts. There is another graphite component located between the metal bodies that support the electrodes, the furnace jacket. Together with the electrodes it forms an enclosure around the graphite tube, which stabilizes the thermal radiation conditions of the graphite tube and also guarantees chemically inert conditions. The graphite tube is pre-adjusted through defined support points in the furnace when the atomizer is open. When the movable furnace part is closed, the tube is reproducible lifted into the final position and pressed into the contacts, without coming into contact with the furnace jacket.
4.4.2 Gas flows in the furnace jacket

The furnace jacket houses the gas channels for the separate supply of the primary gas flow (purge gas) and the outer gas flow (protective gas). To support pyrolysis, oxidizing or reducing gases can be added to the primary gas flow. When using compressed air, temperatures > 500 °C should be avoided since the graphite tube itself will then be attacked.

The primary gas flow has the task of removing all gases which occur in the graphite tube during drying and pyrolysis.

At the same time the primary gas flow prevents condensation of the analytes on the furnace windows and of influencing the residence time of the analyte atoms in the beam path. During atomization, the primary gas flow is generally interrupted in order to achieve the longest possible residence time for the atoms in the beam path of the graphite tube. The desired result is a high sensitivity.

The outer gas flow sweeps the graphite tube and is directed through the funnel insert to the outside. The outer gas flow is responsible for ensuring that the graphite tube is surrounded by inert gas and thus protects it against oxidation by atmospheric oxygen.
The heat flows inside the furnace jacket via a cylindrical attachment to the fixed furnace part. This may increase the temperature of the atomizer's internal walls to the extent that condensation of the analytes (the sample) is avoided.

The cone attachment on the opposite side of the furnace jacket forms together with the insulating ring an exactly defined gap in the rotatable part of the furnace, ensuring that the cell interior is sealed against ingress of ambient air. In the event of a tube rupture in the furnace jacket, the insulating ring in the movable furnace part prevents a short circuit between the furnace parts.

The furnace jacket is drilled through in the direction of the optical axis, the outer cylinders support the furnace windows (quartz cell windows). For cleaning, the windows can be pulled off with a twisting motion.

When changing from the wall tube to the platform tube or to the solid tube for solids analysis, it should be remembered that these special graphite tubes intersect the free opening for the beam passage on one side. When selecting the corresponding technique, the motorized height adjustment moves software-controlled to the optimum height position.
4.4.3 Graphite tube versions, furnace parts and inserts

Three graphite tube versions are available:

- Standard graphite tube (wall tube)
- Graphite tube for solid analysis
- Graphite tube with PIN platform
- Omega graphite tube (with platform)

![Graphite tube versions](image)

**Fig. 16** Graphite tube versions

<table>
<thead>
<tr>
<th>Graphite tube version</th>
<th>Total addable volume</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard graphite tube</td>
<td>max. 50 µL</td>
<td>Aqueous samples (samples requiring complex analysis)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternatively for solid samples (solid technique)</td>
</tr>
<tr>
<td>Graphite tube with PIN platform</td>
<td>max. 40 µL</td>
<td>Aqueous samples (samples requiring complex analysis)</td>
</tr>
<tr>
<td>Omega graphite tube</td>
<td>max. 50 µL</td>
<td></td>
</tr>
<tr>
<td>Standard graphite tube for solid analysis</td>
<td>Max. 3 mg</td>
<td>Solids (solid technology)</td>
</tr>
<tr>
<td>(without dosing opening)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Furnace jacket, adapters and inserts](image)

**Fig. 17** Furnace jacket, adapters and inserts
<table>
<thead>
<tr>
<th>No.</th>
<th>Furnace Part / Insert</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solid sample carrier</td>
<td>Adapter for solid samples</td>
</tr>
<tr>
<td>2</td>
<td>Solids adjustment aid internal &amp; external</td>
<td>Adjusting the solid autosampler SSA 600</td>
</tr>
<tr>
<td>3</td>
<td>Pipetter insert</td>
<td>Funnel opening to the pipetting channel</td>
</tr>
<tr>
<td>4</td>
<td>Solid adapter</td>
<td>Sealing cap for pipetter opening</td>
</tr>
<tr>
<td>5</td>
<td>Liquid adjustment aid</td>
<td>Adjusting the autosampler AS-GF</td>
</tr>
<tr>
<td>6</td>
<td>Electrode (2 per furnace)</td>
<td>Electrical contact to the tube wing</td>
</tr>
<tr>
<td>7</td>
<td>Furnace jacket</td>
<td>Adapter for graphite tube</td>
</tr>
</tbody>
</table>

### 4.4.4 Radiation sensor

The radiation sensor is located on the right side of the graphite tube furnace and is inclined in relation to the direction of radiation (10 in Fig. 12 p.34). It recalibrates the tube temperatures by receiving radiation from the interior of the graphite tube on a sandwich receiver. Using two wavelengths for detection, an independent quotient signal is derived for temperature measurement which is independent of the degree of radiation of the graphite tube. Recalibration takes place when formatting the graphite tube.

### 4.4.5 Furnace camera

The furnace camera can be activated through software control. The image of the furnace camera is then displayed on the ASpect CS workspace in a separate window. The furnace camera monitors the process, beginning with the injection of the sample into the graphite tube through to completion of drying. The user can thus check and correct the dipping of the dosing tube into the graphite tube, the dispensing of the sample and other components as well as the drying procedure. Prior to the pyrolysis the furnace camera switches off automatically. To illuminate the graphite tube an illumination device (9 in Fig. 12) has been fitted to the side of the furnace and iswitched on with the furnace camera.
4.5 Accessories for the graphite tube technique

4.5.1 Autosampler AS-GF

The autosampler AS-GF is used in the graphite tube technique for feeding liquid samples. In the HydrEA technique it supplies the reaction gas to the graphite tube. Manual pipetting is not recommended because of poor reproducibility.

Fig. 18 Autosampler AS-GF

The autosampler AS-GF accepts defined volumes of different solutions and places them into the graphite tube. It enables the

- Addition of up to five modifiers to the sample solution
- Transport of the sample solution to the thermal pretreatment in the tube
- Enrichment of samples
- Placement of components in the preheated tube
- Separate transport of components with intermediate washing
- Automatic preparation of standards by dilution or by different volumes
- Fixed, preselected or intelligent sample dilution
- Fully automatic multi-element mode (night mode possible)

The sample tray of the AGS-GF has space for 100 sample cuts (with \( V = 1.5 \text{ mL} \)) and 8 central cups for diluent, special samples, standards, modifiers etc. (with \( V = 5 \text{ mL} \)).

The AS-GF is hung in the adapters provided in the sample chamber and electrically connected to the contrAA 800. The device parameters of the AS-GF are set with the ASpect CS control software.
4.5.2 Solid samplers SSA 600 and SSA 6z

The solid autosamplers SSA 600 and SSA 6z are a condition for solids analysis in the graphite tube technique. They alone feed the IC sample carriers populated with solid sample reproducibly into the graphite tube.

The solid autosampler SSA 600 transports the solid samples fully automated into the graphite tube furnace. The integrated micro-scale weighs the samples and takes care of the sample weights for analysis. The solid autosampler SSA 600 has 84 sample positions when using two sample plates. The model SSA 600L can also dose liquid standards to the contrAA 800 with its liquid dosing unit.

The SSA 6z has been conceived for manual operation and requires an external balance. The sample mass must be transferred manually to the sample table.

A full description of the solid autosamplers can be found in the operating instructions "Solid Autosampler SSA 600" or "Solid Autosampler SSA 6z".

4.6 Flame system

Flame atomic absorption spectroscopy is used for the determination of trace elements in the concentration range from µg/L to mg/L and for the determination of main components. It requires a flame with constant properties. The flame composition must also be compatible with the respective element.

The height of the nebulizer mixing chamber can be automatically adjusted by 12 mm to move the flame zone with the greatest absorption into the beam direction. In the combination unit contrAA 800 D the nebulizer mixing chamber burner system can also be automatically aligned in depth with the beam path. In the contrAA 800 F the depth of the atomizer is set at factory but can be readjusted via an adjustment screw.

A pneumatic nebulizer with ring-shaped slot aspires the sample solution and sprays it into the mixing chamber. In the mixing chamber the sample aerosol is mixed with acetylene and oxidant before it emerges from the burner slot. The flame is either 5 or
10 cm long and a few millimeters wide. It is irradiated over its full length. For the measurement of main components, the burner can be rotated by max. 90° on the mixing chamber tube (transverse position). This shortens the absorption path. The sensitivity is correspondingly lower. The burner rotation can be reproducibly adjusted using a scale at the burner neck.

4.6.1 Gas automatic

The gas automatic ensures that the supply of acetylene and oxidant to the flame is free from pressure fluctuations. It enables safe and hazard-free ignition and quenching of the flame. The automatic gas control has three gas inlets for acetylene, air and nitrous oxide.

The fuel flow is set in steps of 5-L-, between 40 and 315 NL/h acetylene, by a proportional valve in the control path. The air flow first fills the reservoir with a capacity of 500 cm³ and is then released to the nebulizer. Air from the reservoir is responsible for normal flame quenching and also for flame quenching in the event of an accident. The oxidant flow to the nebulizer is defined by its setting and the inlet pressure. If additional oxidant is used, the additional oxidant flow (air/nitrous oxide) is regulated in three levels.

A filament ignites the flame. The filament is rotated out of the back of the sample chamber to the center of the burner. It is possible to switch over from the acetylene-air flame to the acetylene nitrous oxide flame by blocking the air supply and adding nitrous oxide. This also increases the acetylene flow. The acetylene nitrous oxide flame is quenched in reverse order. The change-over is performed automatically by the ASpect CS software.

4.6.2 Burner-nebulizer system

Aerosol required by the sample solution for atomization in the flame is generated by the nebulizer. The oxidant flows into the nebulizer via a side connection and flows through the ring-shaped slit formed by the corrosion-proof platinum-rhodium alloy cannula and the PEEK nozzle. The resulting low pressure pulls the sample solution out of the cannula and aspirates more sample solution. The positioning of the cannula tip relative to the nozzle determines the aspiration rate and the fineness of the aerosol. It can be set manually with an adjusting screw and lock nut.

The resulting sample aerosol strikes the baffle ball. Larger droplets condense on the baffle ball and run off via the siphon. The fuel flow strikes the surface of the baffle ball at a right angle. The generated aerosol flows through the mixing chamber to the burner. On the way through the mixing chamber, equilibrium is reached. Other large droplets are separated by gravity and run off via the siphon. The aerosol is atomized in the flame. It must have a small droplet size. Fast evaporation of drops when entering the flame is a precondition for atomizing the sample in the hot zone of the flame. If the sample does not fully evaporate, this has a negative effect on the accuracy of the analysis results. At the same time the background absorption is increased through scattering of the radiation by unevaporated droplets.

The mixing chamber nebulizer system has been designed to allow very fine aerosol to form from the aspirated samples. The system is low maintenance, because the siphon is located in the immediate vicinity of the nebulizer. Large drops drain off immediately and do not enter the mixing chamber. The mixing impeller retains droplets and
stabilizes the aerosol cloud. Potential liquid residues can continuously rise in the mixing chamber tube and drain off to the siphon. Finally, the baffle ball is permanently centered on the nebulizer. It does not need readjusting after cleaning the mixing chamber nebulizer system.

Fig. 20 Nebulizer mixing-chamber burner-system

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Burner</td>
</tr>
<tr>
<td>2</td>
<td>Fixing screw for burner</td>
</tr>
<tr>
<td>3</td>
<td>Combustion gas supply</td>
</tr>
<tr>
<td>4</td>
<td>Screw joints of mixing chamber parts</td>
</tr>
<tr>
<td>5</td>
<td>Locking ring for nebulizer</td>
</tr>
<tr>
<td>6</td>
<td>Nebulizer (sample liquid supply)</td>
</tr>
<tr>
<td>7</td>
<td>Oxidant supply</td>
</tr>
<tr>
<td>8</td>
<td>Siphon drainage</td>
</tr>
<tr>
<td>9</td>
<td>Siphon sensor connection</td>
</tr>
<tr>
<td>10</td>
<td>Siphon</td>
</tr>
<tr>
<td>11</td>
<td>Siphon sensor</td>
</tr>
<tr>
<td>12</td>
<td>Mixing chamber head</td>
</tr>
<tr>
<td>13</td>
<td>Additional oxidant supply</td>
</tr>
<tr>
<td>14</td>
<td>Safety plug</td>
</tr>
<tr>
<td>15</td>
<td>Mixing chamber tube</td>
</tr>
</tbody>
</table>
**4.6.3 Burner and flame type**

The contrAA 800 F and D can be operated with the following types of flames and their corresponding burners:

- Acetylene-air flame with 50 mm one-slit burner (universal burner) or 100-mm-one-slit burner for higher sensitivity
- Acetylene nitrous oxide flame with a 50 mm one-slit burner

If both easy and difficult to atomize elements are to be detected during laboratory operation, the 50 mm one-slit burner (universal burner) is recommended, because not burner change is required between measurements.

Uses of the different flame types:

- The acetylene-air flame can be used for most elements.
- The acetylene nitrous oxide flame is required for difficult-to-atomize elements such as boron, aluminum and silicon.
The burners made of titanium are inert with respect to the influences of aggressive sample solutions. The burners can be exchanged easily and can be infinitely variably rotated up to 90° between 2 stops. One stop is positioned in such a way that the burner is aligned with the optical axis. The 90° stop sets the non-sensitive diagonal position of the burner for determining the main components.

4.6.4 Sensors

The burner-nebulizer system is checked by various sensors so as to guarantee the operational safety.

- A float switch in the siphon indicates the correct level of 80 mm in the water column.
- Two reflex couplers identify the burner type by a code.
- A UV-sensitive sensor monitors the burning flame.

In addition to the above-mentioned sensors, the mixing chamber is also equipped with a safety plug which will fall out if the flame backfires into the mixing chamber.

The ASpect CS control software evaluates the sensor signals and also monitors the gas pressures and the gas flows as well as the status of the flame.

4.7 Accessories for flame technique

4.7.1 Autosamplers AS-F and AS-FD

Manual or automatic sample supply may be employed in the flame technique and the hydride technique. An autosampler facilitates the automated operation during multiple element analysis. The device parameters for the sample supply are configured with the control software ASpect CS.

The contrAA 800 can be operated with the following autosamplers:

- The autosampler AS-F is an automatic autosampler.
- The autosampler AS-FD also has a dilution function.

The autosamplers use sample trays with the same diameter. The following sample tray types are available:
Functions and layout

139 positions  Sample tray with 129 sample positions for 15 mL cups on the outer track and 10 sample positions for 50 mL cups on the inner track

54 positions  Sample tray with 54 positions for 50 mL cups

The sample trays should be selected in accordance with the following aspects:

- Available sample volume
- Type of signal evaluation

The software controlled autosampler arm reaches all the positions intended for sample-taking. The dipping depth into the sample and the special cups is preset, however, it can be adjusted via the control software.

The contrAA 800 supplies the autosamplers with operational voltage. Tray and autosampler arm are driven by stepping motors. The sample tray is rotated into the desired position. The autosampler arm is rotatable and can be lowered by 120 mm.

![Autosampler AS-FD with Fluidik module](image)

Fig. 23  Autosampler AS-FD with Fluidik module

1  Sample tray with cover  4  Storage bottle for diluent
2  sampler arm  5  Fluidik module
3  dosing unit (5000 µL)  6  Storage bottle for washing liquid

On the top of the autosampler AS-F there is a wash cup with overflow next to the sample tray. In the autosampler AS-FD the wash cup is located in a plastic block together with a mixing cup. A diaphragm pump delivers the washing liquid from the supply bottle into the wash cup – this action cleans the dipped cannula by washing it inside and out. Excess washing liquid flows through the overflow into the waste receptacle, which is under the table during the wash cycle.

The autosampler AS-FD features a separate Fluidik module with a dosing unit (5000 µL). The Fluidik module is electrically connected to the autosampler and is supplied with operating voltage via the contrAA 800. Standards or samples are diluted in the mixing cup by first placing the concentrate into the mixing cup. Then the diluent is added at a high dosing speed (max. volume \( V = 25 \text{ mL} \)). A fixed waiting time ensures complete mixing. A second diaphragm pump extracts the residual liquid that has not been taken up by the nebulizer.

The autosampler AS-FD with dilution function features the following advantages:

- Preparation of standards for the calibration by diluting one or several stock standards in the mixing cup
- Dilution of the sample if its concentration is too high, i.e., its element content is higher than 110 % of the calibration standard with the highest concentration
Dilution of all samples at freely selectable dilution ratios up to a ratio of 1:500

4.7.2 Piston compressor PLANET L-S50-15

If no in-house compressed air supply is available, a compressor should be used to provide the air required for the acetylene/air flame.

Analytik Jena offers the piston compressor PLANET L-S50-15 as optional accessory. The compressed air is free from water, dust and oil. At a maximum operating pressure of 800 kPa and with a 15-L air container, the compressor is sufficient to meet the requirements for compressed air supply. For installation and maintenance note the information in the operating instructions of the piston compressor PLANET L-S50-15.

4.7.3 Injection module SFS 6

The injection module SFS 6 (Segmented Flow Star) is available as an optional accessory. It can be used together with an autosampler or in manual mode.

The SFS 6 ensures reproducible conditions in the flame. It continuously aspirates wash or carrier solution to keep the burner at a constant temperature. Small sample volumes can be reproducible measured against a carrier solution.

The operating principle of the injection module SFS 6 is based on a magnetic valve with two inlets and one outlet to the nebulizer. The sample aspiration tube is located at the energized inlet. It is dipped directly into the sample or is connected to the autosampler cannula. The non-energized inlet is connected to the aspiration tube for the wash solution.

There are two switching states:

- Basic state: Sample path is blocked, carrier solution path is free
- Active state: Sample path is free, carrier solution path is blocked

The injection module SFS 6 is controlled with the ASpect CS software.
4.7.4 Scraper – automatic burner head cleaner

The automatic burner head cleaner (scraper) is recommended for continuous and fully automated operation with the nitrous oxide flame. When using the nitrous oxide flame and especially with a fuel-rich flame as e.g. used in the detection of the elements silicon, tungsten, molybdenum and tin, carbon deposits at the burner slot over time. If these deposits are not removed continuously, the burner slot closes up. This would result in a low reproducibility of the measuring results.

Once activated in the ASpect CS software and stored as a method parameter, the scraper guarantees a continuous and reproducible measuring process without any disturbances and interruptions. Dependent on the flame composition and analysis task, the burner head can be cleaned automatically at various frequencies. On the other hand, the scraper can also be used for the automation of the burn-in process of the nitrous-oxide flame. When activated in the window FLAME / CONTROL a cleaning step is performed every 30 s.

The scraper is fixed to the burner head with two knurled head screws. It can be detached if it is not needed. The scraper can be retrofitted on a 50 mm burner.

Fig. 25 Scraper on the 50 mm burner head

4.8 Supplementary accessories – hydride systems

The hydride systems available range from the simple batch systems for users with small samples through to fully automated continuous devices with flow injection.

<table>
<thead>
<tr>
<th>System</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS 50</td>
<td>basic batch system with pneumatic principle of operation. The quartz cell is heated by the acetylene/air flame.</td>
</tr>
<tr>
<td>HS 55 modular</td>
<td>batch system with electrically heated cell unit with or without &quot;Hg Plus&quot; module for Hg detection. The reduction agent solution is metered by a 1-channel hose pump.</td>
</tr>
<tr>
<td>HS 60 modular</td>
<td>Hg/hydride system for continuous flow injection operation with electrically heated cell unit with or without &quot;Hg Plus&quot; module for Hg detection.</td>
</tr>
</tbody>
</table>

More information on the hydride systems can be found in the relevant accessory manuals.
5 Installation and commissioning

CAUTION
Prevent any unauthorized interference!
The device may only be assembled, installed and repaired by service engineers from Analytik Jena or by technical personnel authorized by Analytik Jena.

CAUTION
Observe the safety instructions!
When installing and starting up your device, please observe the instructions provided in the section "Safety instructions" p. 11. Compliance with these safety instructions is a requirement for the error free installation and the proper functioning of your AAS measuring environment. Always observe all warnings and instructions which are displayed on the device itself or which are displayed by the control and analysis program of the ASpect CS.

The contrAA 800 will be delivered directly to the final instrument location by a transportation company. The delivery by this company requires the presence of a person responsible for instrument installation.
The presence of all persons designated for operation of the device during the briefing by the customer service of Analytik Jena is imperative.
Prior to installation the installation conditions required by Analytik Jena at the installation location must be ensured by the customer (→ section "Installation conditions" p.21).

5.1 Supply and control connections

The supply lines are connected during the assembly of the contrAA 800 by the customer service of Analytik Jena.
The mains switch is located on the right side of the contrAA 800. The right side also features an easily accessible connection strip with interfaces for PC and accessories.
A pair of carrying handles is fastened to the left and right of the device for transport and installation. After installation the handles are unscrewed and the openings sealed with the stoppers supplied.
In the contrAA 800 D and G the media connections for gases and power and the fuses are located at the rear of the device. It also has the mains connection for the mains distribution strip for accessories.

The contrAA 800 D has connections for the following gases: inert gas (argon) and additive gas (e.g. compressed air) for the graphite tube technique and fuel gas (acetylene), nitrous oxide and compressed air for the flame technique. In the contrAA 800 G no connections for the flame gases are present.

The interfaces for PC, autosampler and hydride system and the fuses for the Xenon short arc lamp are located at the connection strip at the right side of the device.
In the contrAA 800 F with flame technique the media connections for gases are located at the rear of the device: fuel gas, nitrous oxide and compressed air for the flame and argon for spectrometer purging.

In the contrAA 800 F the transformer block with mains connection and fuses is missing at the rear of the device. The mains connection for the device and all fuses are located at the connection strip (→ Fig. 30). The contrAA 800 F does not have a mains connection for accessories at the AAS device. The base device, the PC and the
accessories (printer, hydride system etc.) are connected jointly to the electric mains via the 5-way distribution strip supplied.

1. PC connection
2. Free COM port for accessories
3. contrAA PC connection (service use only)
4. Xenon lamp fuses F7/F8 T 3.15 A/H
5. Mains connection cable for contrAA
6. Fuses F1/F2 T 10 A/H (under the cover plate)
7. Argon connection for spectrometer purging
8. Connection for flame autosampler
9. Connection for graphite autosampler (free)
10. Solid sampler connection (free)
11. Hydride system connection
12. External mobile cooling unit connection (free)

Fig. 30 Connection strip of the contrAA 800 F

The rating plate is located at the rear of the device. The rating plate shows the serial number and the electrical connection data.

<table>
<thead>
<tr>
<th>Information on the rating plate</th>
<th>contrAA 800 D + G</th>
<th>contrAA 800 F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer (incl. address)</td>
<td>Analytik Jena, 07745 Jena, Konrad Zuse Str. 1, Germany</td>
<td></td>
</tr>
<tr>
<td>CE marking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol for waste disposal in accordance with WEEE directive:</td>
<td>Meaning: Do not dispose in domestic waste!</td>
<td></td>
</tr>
<tr>
<td>Device type and model</td>
<td>AAS contrAA 800D</td>
<td>AAS contrAA 800F</td>
</tr>
<tr>
<td></td>
<td>AAS contrAA 800G</td>
<td></td>
</tr>
<tr>
<td>Voltage / frequency</td>
<td>230 V ~ 50 / 60 Hz</td>
<td>10-240 V ~ 50 / 60 Hz</td>
</tr>
<tr>
<td>Typical average power consumption</td>
<td>2100 VA</td>
<td>460 VA</td>
</tr>
<tr>
<td>max. current consumption</td>
<td>max. 52A/8s or max. 85A/1s</td>
<td>Detail omitted</td>
</tr>
<tr>
<td>Serial number</td>
<td>S/NO. 10-16100-APXXX</td>
<td>S/NO. 10-1610F-AQXXX</td>
</tr>
</tbody>
</table>
|                                 | S/NO. 10-1610G-AQXXX |}

The serial number is also attached in the lamp chamber (top).
5.2 Installing the contrAA 800

The contrAA 800 may only be installed and connected by the customer service of Analytik Jena or by technical personnel authorized by Analytik Jena. The graphite tube or burner-nebulizer system and the connections in the sample chamber must be installed by the customer in accordance with the maintenance instructions. Descriptions of these installation procedures are provided in the chapters below. The installation of the autosamplers AS-GF and AS-F/AS-FD will also be described. The installation of the solids autosampler is performed in accordance with a separate user instruction.

Tools

- 4 plugs, plastic (included in the scope of delivery)
- Open-ended wrench 12 mm, 14 mm and 19 mm

Work steps

1. Unscrew and remove the four handles and keep in a safe place.
2. Seal the openings with stoppers.
3. Install the gas supply at the rear of the device (→ section "Supply and control connections" p.49):
   - Plug the hoses for inert gas (argon) and additive gas, if applicable, onto the hose screw joint and tighten the union nut by hand.
   - If not additive gas is used: Connect the additive gas connection via a T piece and short hose piece to the inert gas connection.

Flame technique:

- Tighten the acetylene gas connection with a 19 mm open-end wrench. Left hand thread!
- Tighten the compressed air gas connection with a 12 mm open-end wrench.
- Tighten the nitrous oxide gas connection by hand or with a 14 mm open-end wrench.

4. Check the gas connections for leaks (→ Section "Checking the gas connections for leaks" p.93).

5. In the contrAA 800 D: Remove the red transport lock from the sample chamber and keep it safe.
6. Fill the cooling water tank in the lamp chamber with approx. 4 liters tap water up to the “max” marking. Mix very hard tap water (conductivity $\sigma \geq 1 \text{ mS/cm}$) 50/50 with deionized water. Make sure that the rear chamber of the cooling water tank is also filled.

**Note:** The cooling water circuit has been filled at factory with a sufficient quantity of cooling water additive. Therefore, no cooling water additive needs to be added during initial commissioning.

7. Establish the electrical connection (→ Section "Energy supply" p. 21).

8. Connect the PC and contrAA 800 with USB cables (1 in Fig. 28 p.51 and Fig. 30 p.52).
   - The supply and control connections have been installed.
5.3 Installing and starting ASpect CS

For the installation and start of the control and analysis program ASpect CS refer to the manual "ASpect CS".

5.4 Graphite tube technique

**WARNING**

Danger of UV radiation being reflected!

During the installation work in the sample chamber the graphite tube furnace can be maladjusted. The maladjustment of the atomization unit may result in UV radiation emerging from the sample chamber.

In the contrAA 800 D the atomization unit is automatically adjusted prior to each measurement start. If the atomization unit is maladjusted during an ongoing measurement, e.g. by an impact, stop and restart the measurement.

In the contrAA 800 G the risk of maladjustment can be precluded.

5.4.1 Connections in the sample chamber for the graphite tube technique

The connections for gas and cooling water and power are permanently installed on the graphite tube furnace.

---

![Diagram](image)

Fig. 33 Elements in the sample chamber for the graphite tube technique

1. AS-GF support on the right sample chamber
2. Graphite tube furnace with connections
3. Depth-adjustable stop for AS-GF
4. AS-GF support on the left sample chamber
5.4.2 Software presettings for the graphite tube technique

The options for the graphite tube technique are set in the MAIN SETTINGS window of the ASpect CS software. Through initialization the software interface is adjusted with the method and device parameters.

In the contrAA 800 D the graphite tube furnace is moved software-controlled into position during the initialization of the graphite tube technique and aligned in height and depth in the beam path. In the contrAA 800 G the furnace is automatically aligned in height. The depth is preset at factory.

ATTENTION

Danger of equipment damage in the contrAA 800 D!

Before changing the atomizing technique, remove the burner, cell heating and autosampler, since these accessories might be damaged during rotation.
In the graphite tube technique the following options can be selected:

<table>
<thead>
<tr>
<th>Group</th>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technique</td>
<td>GRAPHITE FURNACE</td>
<td>Use the graphite tube furnace as the atomization technique</td>
</tr>
<tr>
<td></td>
<td>HYDREA</td>
<td>Use the hydride systems HS 55 or HS 60 modular in combination with the graphite tube furnace (contrAA 800 D+G)</td>
</tr>
<tr>
<td>Sample</td>
<td>LIQUID</td>
<td>Analyze liquid samples (use AS-GF as autosampler).</td>
</tr>
<tr>
<td>State</td>
<td>SOLID</td>
<td>Analyze solid samples (use SSA 600 or SSA 6z).</td>
</tr>
<tr>
<td>Tube Type</td>
<td></td>
<td>Selection for liquid samples only.</td>
</tr>
<tr>
<td></td>
<td>WALL</td>
<td>Use the IC graphite tube.</td>
</tr>
<tr>
<td></td>
<td>PLATFORM</td>
<td>Use the IC graphite tube with PIN platform or Omega graphite tube.</td>
</tr>
<tr>
<td></td>
<td>AUTO DETECT</td>
<td>Enable automatic detection of the tube type.</td>
</tr>
</tbody>
</table>

The height of the graphite tube furnace is automatically adjusted to the different graphite tube versions.
5.4.3 Inserting the graphite tube into the furnace

**ATTENTION**

The graphite tubes of the contrAA 800 are manufactured specifically and may only be ordered from Analytik Jena. Do not use any other graphite tube. They might damage the contrAA 800.

Never touch the graphite tube with your bare fingers! Fingerprints burn into the surface, and this causes premature damage to the pyrolysis coating of the tube.

1. In ASpect CS open the window FURNACE with . Go to the CONTROL tab.

![Fig. 36 Furnace / Control dialog window](image)

2. Open the graphite tube furnace using the button [OPEN FURNACE].

3. Insert the graphite tube using tweezers into the graphite tube furnace so that it is loosely seated on the supports of the furnace jacket and the pipetter opening faces up. Wear gloves during insertion.

   In the graphite tube for solid analysis without pipetter opening, any side may face up.

4. Close the graphite tube furnace with the [CLOSE FURNACE] button.

5. In the TUBE area enter the HEAT CYCLES and LIFETIME parameters of the inserted graphite tube.

   ✓ The graphite tube has been inserted into the furnace.
Removing the tube

**CAUTION**

Risk of burns!

Allow the graphite tube furnace to cool down before removing the graphite tube.

**ATTENTION**

Never touch the graphite tube with your bare fingers!
Fingerprints burn into the surface, and this causes premature damage to the pyrolysis coating of the tube.

1. Open graphite tube furnace using the button [OPEN FURNACE] in the window **FURNACE / CONTROL** (Fig. 35 p.57).
2. Remove the graphite tube with tweezers, or wear gloves if removing by hand.
3. Insert a new graphite tube and close the graphite tube furnace using the button [CLOSE FURNACE].
5.4.4 Formatting the graphite tube

When the graphite tube is formatted the following takes place:

- Atmospheric oxygen is expelled from the oven and the force on the movable furnace part is adjusted.
- The tube temperature is recalibrated.
- The pyrolysis coating is conditioned in the newly inserted graphite tube.
- The furnace is cleaned after pausing.

It is recommended to format the furnace after the following steps:

- after power to the spectrometer is turned on.
- after inserting a new graphite tube.
- after closing a previously open furnace.
- periodically every 50–100 measurements.

The complete formatting program contains nine pre-programmed temperature stages.

Formatting is started in the FURNACE / CONTROL window. During formatting, the current temperature stage, time and ramp are displayed in the FORMAT TUBE window. In the first five stages, the furnace and the graphite tube are cleaned and conditioned (contacts between the graphite tube and the electrodes are aligned). By means of a special sensor technique, the tube temperature in the remaining four stages is measured. The corrected furnace temperature ensures correct measurement results.

The ASpect CS software issues an onscreen message as soon as the formatting factor is outside the tolerance limits. The following maintenance measures must then be checked consecutively:

- Repeat formatting.
- Heat graphite tube and clean contact surfaces of the electrodes (see "Cleaning the graphite surfaces" p. 96).
- Replace graphite tube (see "Cleaning and changing the graphite tube" p. 97).
- Replace electrodes and furnace jacket (see "Replacing the electrodes and furnace jacket" p. 97).

1. In ASpect CS open the window FURNACE / CONTROL with .
2. In the TUBE group field enter data specific to the current graphite tube:

<table>
<thead>
<tr>
<th>New graphite tube</th>
<th>Heat cycles</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lifetime</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Used graphite tube</th>
<th>Heat cycles</th>
<th>Current value of the graphite tube</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lifetime</td>
<td>Current value of the graphite tube</td>
</tr>
</tbody>
</table>

3. Actuate the [FORMATTING] button.
   - The graphite tube can be used for measurements.
### 5.4.5 Cleaning / clean out of the graphite tube

1. In ASpect CS open the window FURNACE / CONTROL with [Image].
2. In the CLEAN FURNACE group field set the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMP. [°C]</td>
<td>End temperature to be reached during clean out. The final temperature should be at least 50 °C higher than the previous atomization temperature.</td>
</tr>
<tr>
<td>RAMP [°C/S]</td>
<td>Ramp</td>
</tr>
<tr>
<td>HOLD [s]</td>
<td>Set the hold time</td>
</tr>
</tbody>
</table>

3. Start the clean out with the [START] button in the CLEAN FURNACE group field. Repeat the clean out several times at a higher temperature if required.

The following temperature program must be used for the clean-out of the gold or iridium coated graphite tube (see also operating instructions of the hydride system). For the nebulization of the metal coating a higher end temperature must be selected.

#### Clean-out Evaporation

<table>
<thead>
<tr>
<th>Element</th>
<th>Au</th>
<th>Ir</th>
<th>Au</th>
<th>Ir</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMP. [°C]</td>
<td>1000 °C</td>
<td>2200 °C</td>
<td>1800 °C ≤ T ≤ 2600 °C</td>
<td>≤ 2600 °C</td>
</tr>
<tr>
<td>RAMP [°C/S]</td>
<td>500 °C/s</td>
<td>500 °C/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOLD [s]</td>
<td>10 s</td>
<td>10 s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Do not select a longer hold time as this may exceed the load limit of the furnace.

Clean out or evaporation can be repeated several times.

### 5.5 Installing and adjusting the AS-GF autosampler

#### 5.5.1 Installing the autosampler

**ATTENTION**

Always switch off the contrAA 800 prior to the installation and uninstallation of the AS-GF! Connecting or disconnecting electrical contacts might damage the sensitive electronics of the contrAA 800.

**ATTENTION**

Choose a safe location for the completion of the AS-GF. The device can tilt easily.

In the contrAA 800 D the burner must be removed from the mixing chamber-nebulizer system before the autosampler AS-GF can be suspended in the sample chamber.
1. Switch off the contrAA 800.

2. Install the tube guide (5 in Fig. 38) to the autosampler arm of the AS-GF and attach using the lock screw.

Note: The autosampler arm can be moved manually in the deactivated state.

3. Screw the dosing tube into the right opening of the T valve (10 in Fig. 38) on the dosing unit. Feed the dosing tube through the tube holder on the back of the autosampler and on the autosampler arm. Insert the dosing tube into the tube guide (5 in Fig. 38) until the tube end protrudes approx. 8 mm from the tube guide at the bottom; attach the tube using a clamp nut.

4. Plug the control cable into the socket at the back of the AS-GF and screw it tight.

5. Hang the AS-GF on the supports in the sample chamber (1 and 7 in Fig. 38). Check whether the autosampler is suspended horizontally; if necessary, align the autosampler using the depth-adjustable stop in the sample chamber (3 in Fig. 33 p. 55).

6. If necessary, align the AS-GF with the furnace (rough adjustment): Manually rotate the autosampler arm over the dosing opening in the graphite
tube. If the dosing tube does not align with the opening, move the suspension of the autosampler forward or back. Remove the autosampler from the sample chamber to do so. Move the left and right suspension mounts with the aid of adjusting screw 1 and set screw (2 and 4 in Fig. 39). Use a screwdriver to adjust the adjustment screw. Hook the autosampler back in and check the rough adjustment. Repeat the process, if necessary.

![Fig. 39 AS-GF with screws for furnace alignment](image)

1. Slider with left suspension mount  
2. Adjusting screw 1  
3. Slider with right suspension mount  
4. Set screw

7. Plug the control cable into the socket on the connection strip of the AAS device (autosampler graphite connection, 8 in Fig. 28 p. 51).
8. Place and fix the sample tray on the axis of the AS-GF.
9. Place the sample cover until it sits in the guide rail.

10. If necessary, fit the dosing syringe to the dosing unit (→ Section "Replacing the dosing syringe" p. 114).
11. Switch on the PC and contrAA 800 and wait for the initialization of the spectrometer (approx. 3 min.), start the ASpect CS software and initialize the system.

✓ The AS-GF autosampler is installed in the sample chamber.

Prior to installing the HydrEA technique the graphite tube must be coated with iridium or gold (see hydride system manual). Use the AS-GF autosampler with the dosing tube used during graphite operation. Alternatively, the iridium or gold stock solution (c = 1 g/L) may be pipetted manually into the graphite tube.

1. Coat the graphite tube with iridium or gold using the autosampler.

**Attention:** Do not use the titanium cannula for the coating process.

2. Switch off the contrAA 800 and install the hydride system (e.g. HS 60 modular).
3. For the HydrEA technique detach the clamping nut of the hose guide and pull out the dosing tube. Remove the dosing tube from the hose mount at the autosampler arm.

4. Plug the titanium cannula into the hose guide and allow it to protrude approx. 8 mm at the bottom. Attach the titanium cannula with the clamping nut.

5. Attach the reaction gas tube (from the hydride system) to the titanium cannula.

Suitable autosamplers for continuous sample supply to the hydride system HS 60 modular are the AS-F and the AS-FD.

5.5.2 Adjusting the sampler

The AS-GF has already been installed in the sample chamber in accordance with section "Installing the autosampler" S.61. The fine alignment of the AS-GF to the furnace is supported by software. The autosampler is aligned for the dosing tube to optimally deposit the samples in the graphite tube without touching the dosing insert. The injection depth for the sample is also adjusted.

1. Start the ASpect CS software and open the AUTOSAMPLER window with the symbol , change to the tab TECHN. PARAMETERS

2. Start aligning using the [ALIGN SAMPLE TO FURNACE] button.

3. Follow the prompts in the dialog fields of the software.

Align the AS-GF with the furnace:

- Withdraw the dosing tube approx. 8 mm from the cannula of the autosampler and secure it with a clamping nut.

- Replace the pipetter insert in the graphite tube furnace with the adjusting aid with crosshair.
Lower the autosampler arm to the height of the adjusting aid using the buttons [UP]/[DOWN].

Align the x direction (parallel to the optical axis) with the buttons [LEFT]/[RIGHT] to the crosshair. Perform the fine adjustment in the x direction with the adjustment screws 2 and 3.

Adjust the y direction using the adjustment screw 1 at the autosampler.

Tighten the screws and secure the adjustment with lock nuts.

Adjust the z direction software-controlled. Lower the autosampler arm up to the upper edge of the adjusting aid until the dosing tube just dips into the dosing opening.

By clicking on the [NEXT] button save the adjustments in the x and z direction in the software.

The autosampler arm returns to the initial state.

Remove the adjusting aid and re-insert the dosing funnel.

Adjust the injection depth of the sample in the graphite tube:

Loosen the clamp nut, place the dosing tube onto the tube bottom, check position with furnace camera if necessary, fasten with a clamping nut.

Adjust the autosampler arm software-controlled to the optimum injection depth above the tube floor (approx. -0.8 mm for 20 µL pipetting volume).

Complete the adjustment with [FINISH].

The AS-GF autosampler has been adjusted and is now ready to take measurements.

For further configurations of the autosampler see the instruction manual "ASpect CS" section "Technical autosampler parameters".

### 5.5.3 Populating the sample tray

1. Populate the positions of the AS-GF as follows:

   | Positions 1-100  | 1.5 mL sample cups |
   | Positions 101 – 108 | 5 mL special cups |

2. Place the sample cover with a tight fit.

3. Next steps: Fill the wash bottle with wash solution (e.g. 1 % HNO₃). If necessary, empty the waste bottle and dispose of the waste correctly.

**Note:** The population of the sample tray must match the software configuration in the method or in the sample ID.

### 5.5.4 Uninstalling the autosampler

1. Switch off the contrAA 800 and accessories, paying attention to the shutdown sequence.
2. **For HydrEA coupling:**
   Remove the tube for the reaction gas from the titanium cannula. Remove the titanium cannula from the hose guide by loosening the clamping nut.

3. Remove the control cable from the socket in the right side wall of the AAS device (autosampler graphite connection).

4. Detach adjustment screws 2 and 3 and remove the autosampler AS-GF from the sample chamber.

### 5.6 Flame technique

**WARNING**

Danger of UV radiation being reflected!

Modifications and maintenance in the sample chamber may maladjust the atomization unit. The maladjustment of the atomization unit may result in UV radiation emerging from the sample chamber.

In the contrAA 800 D the atomization unit is automatically adjusted prior to each measurement start. If the atomization unit is maladjusted during an ongoing measurement, e.g. by an impact, stop and restart the measurement.

Check the alignment of the atomization unit in the contrAA 800 F. If necessary, realign the atomization unit in the beam path using the adjustment screw (→ section "Aligning the atomization unit in the beam path" p.93).

In the flame and hydride techniques only work with the sample chamber door locked. The safety glass protects against UV radiation being emitted.

### 5.6.1 Connections in the sample chamber for the flame technique

![Connections diagram](image)

**Fig. 41 Connections at the sample chamber walls**

1. Scraper connection
2. Suspension for autosampler
3. Siphon monitoring connection
4. Connection for injection module SFS 6
5. SFS 6 suspension
6. Mounting holes for autosampler
5.6.2 Software settings for the flame technique

In the MAIN SETTINGS window of the ASpect CS software (Fig. 35 p.57) in the group field TECHNIQUE set the option FLAME. Through initialization the software interface is adjusted accordingly with the method and device parameters.

In the contrAA 800 D the burner-nebulizer system is moved software-controlled into position during initialization and aligned in height and depth in the beam path. In the contrAA 800 F the atomization unit is automatically aligned in height. The depth of the atomization unit is set at factory.

ATTENTION

Danger of equipment damage in the contrAA 800 D!

Before changing the atomizing technique, remove the burner, cell unit with hydride cell and autosampler, since these accessories might be damaged during rotation.
5.6.3 Installation for manual sample supply

With manual sample supply the sample is loaded directly to the burner-nebulizer system. The use of the injection module SFS 6 is possible.

ATTENTION

Switch off the novAA 800 prior to installation! Connecting or disconnecting electrical plug contacts might damage the sensitive electronics of the contrAA 800.

Fig. 43 Flame technique, manual sample supply

1. Switch off the contrAA 800 and accessories, paying attention to the shutdown sequence.

2. Check the tight fit of the mixing chamber-nebulizer system in the holding fixture of the height adjustment. The plate of the mixing chamber tube must make contact. The marking on the mixing chamber tube must be positioned above the edge of the holding fixture (2 in Fig. 43).

3. Plug the nebulizer into the mixing chamber head and lock with the ring.
4. Fit the collection pan below the burner-nebulizer system.

5. Hook the sample tray into the guides at the front of the device and screw them tight.

6. Plug the outlet tube from the connector of the siphon to the connector or the corresponding opening in the lid of the collection bottle. Secure the hose with the hose clamp at the siphon.
   **Note:** Position the outlet tube at a constant incline. If necessary shorten the tube. The hose must not dip in the liquid of the collection bottle.

7. Fill the siphon with water via the mixing chamber tube until water flows out via the outlet tube.
   **Note:** In the contrAA 800 D re-fill the siphon after changing the atomization technique. Some water drains through the drainage tube if the flame atomizer is in the bottom position.

8. Connecting the gas supply (10 in Fig. 43):
   - Hose for fuel gas (red) at the top of the mixing chamber head
   - Hose of oxidant (blue) at the side of the nebulizer
   - Hose for auxiliary oxidant (black) at the side of the mixing chamber

9. Place the required burner (50 mm/100 mm) onto the mixing chamber tube, turn to the stop position and clamp. Ensure that the burner is positioned correctly.

10. Plug the connector of the siphon sensor into the connection on the right sample chamber wall.

11. **Injection module SFS 6**
    If you are working with injection module SFS 6, install injection module SFS 6 (→ Section "Installing the injection module SFS 6" p. 74).

12. Place the sample and wash cups onto the sample tray or a separate table.

13. Attach the aspiration tube to the nebulizer cannula. Dip the other tube end into the sample.

14. Hang the safety glass in and slide it in front of the burner.

15. Switch on the contrAA 800 and start the ASpect CS control software.
    - The burner-nebulizer system is installed and ready for manual sample supply.
5.6.4 Installation for continuous working mode with autosampler

In continuous working mode, the samples are loaded using the autosampler AS-F or AS-FD.

ATTENTION
Switch off the contrAA 800 prior to installation!

Connecting or disconnecting electrical plug contacts might damage the sensitive electronics of the contrAA 800.

1. Switch off the contrAA 800 and accessories, paying attention to the shutdown sequence.
2. Check the tight fit of the mixing chamber-nebulizer system in the holding fixture of the height adjustment. The plate of the mixing chamber tube must make contact.
   The mixing chamber must be aligned to the height adjustment, the marking on the connector must be above the edge of the holding fixture (4 in Fig. 42 p. 67).
3. Plug the nebulizer into the mixing chamber head and lock with the ring.
4. Fit the collection pan below the burner-nebulizer system in the sample chamber.

Fig. 44 Flame technique with autosampler AS-FD and SFS 6

1. Fluidik module with dosing unit
2. Hose for washing liquid
3. Storage bottle for washing liquid
4. Encased tubes for washing liquid and diluent
5. Autosampler AS-FD with sample tray
6. Injection module SFS 6 (where applicable)
7. Sample liquid supply
8. Tube for diluent (thick cannula) and sample intake tube (thin cannula)
5. Plug the outlet tube from the connector of the siphon to the connector or the corresponding opening in the lid of the collection bottle. Secure the hose with the hose clamp at the siphon.

   Note: Position the outlet tube at a constant incline. If necessary shorten the tube. The hose must not dip in the liquid of the collection bottle.

6. Fill the siphon with water via the mixing chamber tube until water flows out via the outlet tube.

7. Plug the connector of the siphon sensor into the connection on the right sample chamber wall (3 in Fig. 41 p.66).

8. Connecting the gas supply:
   - Connect the hose for fuel gas (red) at the top of the mixing chamber head (15 in Fig. 42 p.67)
   - Connect the hose for oxidant (blue) at the nebulizer (12 in Fig. 42 p.67)
   - Connect the hose for auxiliary oxidant (black) at the side of the mixing chamber (14 in Fig. 42 p.67)

9. Place the required burner (50 mm/100 mm) onto the connector, turn to the stop position and clamp. Ensure that the burner is positioned correctly.

10. Hang the safety glass in and slide it in front of the burner.

   ✓ The burner-nebulizer system is installed complete with connections.

---

Installing the injection module

If you are working with injection module SFS 6, install injection module SFS 6 (→Section "Installing the injection module" p.74).

Installing the autosampler

1. Hang the autosampler in the corresponding supports of the sample chamber (2, 6 in Fig. 41 p. 66).

   Adjust the adjusting screw at the right suspension mount in such a way that the autosampler cannot slip out of the mounting hole (3 in Fig. 45 p. 72).

2. Place the Fluidik module (for AS-FD) or storage bottle for washing liquid (for AS-F) next to the AAS device.

3. Plug the control cables for connecting the autosampler to the Fluidik module and the AAS device into the connections on the rear of the autosampler and lock them in place (1 and 2 in Fig. 45 p. 72). To do so, unhook the autosampler on the right.

4. Plug the control cable into "Sampler flame" connection on the right-hand wall of the contrAA 800 (7 in Fig. 28, p. 51 or 8 in Fig. 30 p. 52) and lock it in place.

5. Attach the outlet tube to the outlet connector of the autosampler (backplate, 4 in Fig. 45 p. 72).

   Attach the outlet tube to the connector or the corresponding opening in the lid of the receiving bottle.

   Note: Position the outlet tube at a constant incline. If necessary shorten the tube. The tube must not dip in the liquid.

6. Screw the tube for the washing liquid to the rear of the autosampler (5 in Fig. 45 p. 72).

   Note: In the AS-FD the hoses for the connection between the autosampler and the Fluidik module are connected to each other with a casing and numbered. The tubes
are attached to the rear of the autosampler using the attachment lug. Wash tube "2" marking.

7. Insert the cannula(s) with guide into the opening in the autosampler arm and secure with the lock screw.

   **Note:** The autosampler arm can be moved manually in the deactivated state.

8. In the AS-FD feed the dosing tube for the diluent (marking "1") through the tube guide at the autosampler arm and plug it onto the thicker cannula of the autosampler arm.

9. Plug the sample intake tube through the tube guide at the autosampler arm onto the thin cannula of the autosampler arm.

10. Stick the sample aspiration tube onto the nebulizer cannula.

11. Lay the sample tray on the autosampler casing, make sure it clicks into place.

   **Note:** The control does not start the autosampler, or stops it automatically, if there is no sample tray.

12. Place the sample cover until it sits in the guide rail.

---

**Preparing the Fluidik module (AS-FD only)**

1. If necessary, fit the dosing syringe to the dosing unit (→ Section "Replacing the dosing syringe" p.114).

2. Place the storage bottles for the wash liquid (left) and diluent (right) into the bottle holders of the Fluidik module.

3. Immerse the short tube (marking at the tube "3") into the storage bottle for the diluent. Screw the second tube end to the valve (2 in Fig. 46 p. 73).

4. Screw the dosing tube for the diluent (encased, marking "1") to the second connection of the valve (3 in Fig. 46).

5. Immerse the hose for the wash liquid (marking "2") into the storage bottle.

   ✓ The burner-nebulizer system is installed and ready for continuous sample supply with the AS-F or AS-FD.
1. Switch off the contrAA 800 and accessories, paying attention to the shutdown sequence.

**Uninstalling the autosampler**

2. Detach the sample intake tube from the thin cannula of the autosampler arm.
3. Detach the tube for the wash liquid from the rear of the autosampler.
4. For the AS-FD detach the dosing tube for the diluent from the thicker cannula. Pull the two encased tubes out of the attachment lug at the rear of the autosampler.
5. Pull the outlet tube from the connector of the autosampler (backplate).
6. Detach both control cables at the rear of the autosampler.
7. Remove the autosampler from the sample chamber.

**Uninstalling the injection module**

8. If the injection module SFS 6 was used during operation, decommission the injection module SFS 6 (→Section "Uninstalling the injection module" p. 74).
5.6.5 Installing the injection module SFS 6

Installing the injection module

Fig. 47 Installing the SFS 6 for manual sample supply

1. Screw the intake tubes into the injection module:

   - medium length hose in the top connection – to the sample (1 in Fig. 47)
   - short hose in the side connection – to the nebulizer cannula (2)
   - long hose in the bottom connection – to the wash solution (4)

2. Manual working mode: Hook the injection module into the suspension mount in the sample chamber. Work with an autosampler: Hook the injection module onto the bracket at the rear of the autosampler (6 in Fig. 45 p. 72).

3. Plug the control cable (5 in Fig. 47) into the two pin socket in the sample chamber wall.

4. Plug the short tube (2) onto the nebulizer cannula.

5. Immerse the long tube (4) into the storage bottle with wash solution.

6. Immerse the medium length tube into the sample cup or connect it to the intake cannula of the autosampler.

   ✓ The injection module SFS 6 is ready for measurements.

Uninstalling the injection module

1. Remove the intake tubes out from the washing liquid bottle and the sample cup (for manual operation), or pull them off the intake cannula of the autosampler, allowing the system to drain.

2. Pull off the short piece of tube from the nebulizer cannula.

3. Detach the control cable of the SFS 6 from the AAS, remove the injection module.
5.6.6 Replacing the burner

**CAUTION**
Risk of burns!
To remove the hot burner, use the burner bracket (optional accessory). Otherwise wait until the burner has cooled down.

1. Push the safety glass upwards.
2. Loosen the fixing screw of the burner and take the burner off. Use the burner bracket if available.
3. Place the new burner on the mixing chamber tube, turn against the 0° stop and fasten with the fixing screw.
   ✓ The new burner is fully installed.

5.6.7 Installing the scraper

When working with the nitrous oxide flame, it is recommended to use scraper, because it automatically cleans carbon deposits from the burner head during operation with the nitrous oxide flame. Alternatively, carbon deposits can be manually removed from the burner slot with the cleaning rod.

The scraper is delivered ready installed on the 50 mm burner by the manufacturer upon request. It can also be retrofitted on a 50 mm burner.

**ATTENTION**
For combustion gas flows > 250 NL/h pay attention to stubborn deposits. Remove these where necessary to ensure the functionality of the scraper.

1. Unscrew the screws from the front burner jaw (arrows in Fig. 48).
2. Unscrew the fastening rail (1 in Fig. 49) with knurled head screws (3 in Fig. 49) from the scraper.
   The captive knurled head screws remain attached in their holder in the scraper.
3. Fit the fastening screws to the burner body as shown in Fig. 49. Use the three long titanium screws and nuts supplied. Place the screws from the top through the front burner jaw and screw down the fastening rail with nuts.
   Attach the scraper to the guide pins of the fastening rail (2 in Fig. 49) and tighten with knurled head screws (3 in Fig. 49).
   ✓ The scraper is installed.

![Fig. 48 Screws on the front burner jaw](image-url)
5.7 Commissioning the contrAA 800 with accessories

5.7.1 Switching on sequence

**ATTENTION**

Danger of equipment damage in the contrAA 800 D!

Before changing the atomizing technique, remove the burner, cell unit with hydride cell and autosampler, since these accessories will be damaged during rotation.

1. Switch on the exhaust unit.
2. Switch on the PC and wait for the operating system to initialize: The application icons appear on the screen, including the ASpect CS program icon.
3. Switch on the contrAA 800: Press the green ON/OFF switch on the right side wall. Wait until the spectrometer has fully completed its automatic initialization (approx. 3 min.).
4. Start the ASpect CS program: Double-click with the mouse cursor on the ASpect CS icon.
5. In the ASpect CS software in the MAIN SETTINGS window make the configurations for the atomization technique and initialize the system.
6. Connect the printer and the compressor if they are needed.
   ✓ The AAS system is now switched on, work (analysis preparation and measurement) may begin.

5.7.2 Switching off sequence

**ATTENTION**

Danger of lamp damage!

After switching off the Xenon short arc lamp the cooling circuit of the Xenon short arc lamp should continue to run for 30 s before the AAS unit is switched off.
1. On the PC close the control software ASpect CS: Click on the menu **FILE ➤ EXIT**.

2. For unsaved values decide whether data or information should be saved before exiting the program.

3. If the Xenon short arc lamp is still switched on or was switched off less than 30 s ago:
   A prompt asks whether the Xenon short arc lamp should be switched off. If the lamp is switched off, ASpect CS will exit after a delay of 30 s.

4. Shut down the PC.

5. Use the respective mains switches to switch off (in this order):
   - Compressor
   - AAS accessories (e.g. hydride system)
   - contrAA 800
   - Printer
   - PC
   ✓ The AAS system is now switched off.
Service and maintenance

WARNING
Electric shock!

The contrAA 800 must be switched off and the mains plug disconnected before carrying out any maintenance work. The safe disconnection of the contrAA 800 from the mains can only be achieved by pulling out the mains plug. Power is still supplied to both certain areas of the spectrometer, as well as the output socket, after the device has been switched off at the main switch.

This excludes maintenance work during which the operation of the AAS device and the control software is explicitly required, such as the clean out of the graphite tube.

WARNING
Danger of eye and skin damage from UV radiation!

The Xenon short arc lamp and the frame radiate highly intensive light in the visible and UV range. Do not look into the beam of the Xenon short arc lamp or the flame without UV protection glasses. Protect your skin against UV radiation.

WARNING
Danger of UV radiation being reflected!

Modifications and maintenance in the sample chamber may maladjust the atomization unit. The maladjustment of the atomization unit may result in UV radiation emerging from the sample chamber.

In the contrAA 800 D the atomization unit is automatically adjusted prior to each measurement start. If the atomization unit is maladjusted during an ongoing measurement, e.g. by an impact, stop and restart the measurement.

Check the alignment of the atomization unit in the contrAA 800 F. If necessary, realign the atomization unit in the beam path using the adjustment screw (→ section "Aligning the atomization unit in the beam path" p.93).

In the contrAA 800 G the risk of maladjustment can be precluded.

WARNING
Danger of explosion!

The lamp bulb of the Xenon short arc lamp is pressurized (1.5-1.6 MPa cold pressure) and might burst. Only handle the lamp bulb in its safety packaging. Always store new and used lamp bulbs in the safety packaging.

Analytik Jena recommends wearing face protection during the lamp replacement.

Insert the new Xenon short arc lamp in accordance with specifications in the correct direction and with the correct polarity. Do not allow moisture to enter the lamp housing. Only operate the lamp once it has been inserted into the lamp chamber.

Dispose of used bulbs in accordance with the national regulations for high pressure lamps (short arc lamp), paying attention to the packing label supplied. Do not dispose in domestic waste! For queries about disposal please contact the Analytik Jena customer service.
WARNING

The operator is responsible for carrying out suitable decontamination prior to maintenance or repair. This applies whenever the device has been contaminated with hazardous substances externally or internally.

CAUTION

The operator may not undertake any service or maintenance work to this device and its components other than those specified and described in this chapter. Observe the notes in section "Safety instructions" p. 11. Compliance with these safety instructions is a requirement for error-free operation. Always observe all warnings and instructions which are displayed on the device itself or which are displayed by the control program ASpect CS.

CAUTION

Risk of burns at hot surfaces! Before any maintenance of the graphite tube furnace and the burner-nebulizer system pay attention to the cooling down phases.

6.1 Maintenance overview

<table>
<thead>
<tr>
<th>Maintenance item</th>
<th>Action</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Base device</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuses</td>
<td>Exchanging fuses</td>
<td>When required</td>
</tr>
<tr>
<td>Sample chamber</td>
<td>Cleaning&lt;br&gt;Remove fluid from the collection pan</td>
<td>Regularly&lt;br&gt;If there are residues in the tray</td>
</tr>
<tr>
<td><strong>Continuous radiator</strong></td>
<td>Replace lamp bulb</td>
<td>Monthly</td>
</tr>
<tr>
<td><strong>Recirculating chiller for Xenon short arc lamp and graphite tube furnace</strong></td>
<td>Check the cooling water level in the cooling water tank&lt;br&gt;Fill cooling water&lt;br&gt;Replace cooling water, clean tank</td>
<td>Monthly&lt;br&gt;Annually</td>
</tr>
<tr>
<td>Fans (rear of the device)</td>
<td>Check the ventilation grid for contamination, clean if necessary</td>
<td>Monthly</td>
</tr>
<tr>
<td>Air filter (rear of the device)</td>
<td>Visual inspection for contamination&lt;br&gt;Replace.</td>
<td>Regularly, in dusty environments (e.g. mines) daily&lt;br&gt;As required, but no later than after 12 months</td>
</tr>
<tr>
<td>Gas connectors</td>
<td>Check for leaks</td>
<td>Weekly and each time when new connections are made or if there is a noticeable pressure drop at the manometer of the external gas supply</td>
</tr>
<tr>
<td>Maintenance item</td>
<td>Action</td>
<td>Frequency</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Atomization unit</td>
<td>align in the beam path</td>
<td>contrAA 800 D: automatic height and depth adjustment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>contrAA 800 G: automatic height adjustment, depth adjustment possible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>via adjustment screw</td>
</tr>
<tr>
<td></td>
<td></td>
<td>contrAA 800 F: automatic height adjustment, adjust depth after</td>
</tr>
<tr>
<td></td>
<td></td>
<td>installation and maintenance work via adjustment screw</td>
</tr>
<tr>
<td>Graphite tube furnace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furnace window</td>
<td>Wipe with a lint-free cloth soaked in alcohol</td>
<td>Daily to weekly, dependent on the sample matrix</td>
</tr>
<tr>
<td></td>
<td>Clean with a mild surfactant.</td>
<td>For stubborn contamination</td>
</tr>
<tr>
<td>Graphite surfaces</td>
<td>Clean the contact surfaces of the electrodes with a cotton swab, a</td>
<td>Daily</td>
</tr>
<tr>
<td></td>
<td>lint-free cloth soaked in alcohol or cotton swab.</td>
<td></td>
</tr>
<tr>
<td>Graphite tube</td>
<td>Clean by clean-out via control software</td>
<td>Daily</td>
</tr>
<tr>
<td></td>
<td>Replace.</td>
<td>With marked burn-up, severe loss of sensitivity and very high RSD% values</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If an error message indicates that the formatting factor is outside of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tolerances</td>
</tr>
<tr>
<td>iridium or gold coated graphite</td>
<td>Evaporate the metal coating</td>
<td>After approx. 500 atomizations or for a new coating (faults lead to</td>
</tr>
<tr>
<td>tube</td>
<td></td>
<td>distorted measuring results)</td>
</tr>
<tr>
<td>electrodes and furnace jacket</td>
<td>Clean contact surfaces of the electrodes</td>
<td>Daily to weekly, when working with matrix modifiers (MgNO₃) immediately</td>
</tr>
<tr>
<td></td>
<td>Check for wear, replace if necessary</td>
<td>after use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monthly, if necessary</td>
</tr>
<tr>
<td>Pipetter insert</td>
<td>Clean and wash</td>
<td>May be necessary on a daily basis, depending on the type of samples</td>
</tr>
<tr>
<td>Burner-nebulizer system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burner-nebulizer system</td>
<td>Dismantle and clean, optimize sensitivity if necessary</td>
<td>Depending on analyzed sample material, biological samples or samples</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with a high salt content require more frequent cleaning</td>
</tr>
<tr>
<td>Sensor for burner detection</td>
<td>Clean with alcohol</td>
<td>With visible contamination or if an installed burner is not correctly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>detected by the software</td>
</tr>
<tr>
<td>Injection module SFS 6</td>
<td>Check hoses for deposits, kinks and cracks, replace if necessary</td>
<td>Regular inspection, replace hoses if necessary</td>
</tr>
<tr>
<td>Autosamplers AS-GF, AS-F and AS-FD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosing tube / cannulas</td>
<td>Check for deposits, kinks and cracks, replace if necessary</td>
<td>Check regularly since deposits can falsify the measurement results.</td>
</tr>
</tbody>
</table>
## Maintenance item

<table>
<thead>
<tr>
<th>Action</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wash cup, mixing cup</td>
<td>Cleaning, Check wash cup for freedom of bubbles</td>
</tr>
<tr>
<td>Dosing syringe at the dosing unit</td>
<td>Replace.</td>
</tr>
<tr>
<td>Piston compressor PLANET L-S50-15</td>
<td></td>
</tr>
<tr>
<td>Pressure reservoir, liquid separator at the filter pressure reducer</td>
<td>Drain condensate</td>
</tr>
<tr>
<td>Intake filter</td>
<td>Check, clean, replace if necessary</td>
</tr>
<tr>
<td>Oil</td>
<td>Check oil level, Replace oil</td>
</tr>
</tbody>
</table>

### 6.2 Base device

#### 6.2.1 Replacing the fuses

**WARNING**

Danger of electric shock!

Switch off the contrAA 800 from the mains switch and disconnect it from the mains prior to replacing the fuses.

The power supply fuses (F1, F2) of the contrAA 800 D and G may only be changed by the customer service of Analytik Jena or by technical personnel authorized by Analytik Jena.

The fuses of the contrAA 800 D and G are located at the rear of the device at the connection strip and in the sample chamber. They are marked.

**Fuses**

- **rear of device**
  
  For fuses see 2, 4 in Fig. 27 p.50

<table>
<thead>
<tr>
<th>Fuse number</th>
<th>Type</th>
<th>Protected circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3</td>
<td>T 6.3 A/H</td>
<td>Mains outlet</td>
</tr>
<tr>
<td>F4</td>
<td>T 6.3 A/H</td>
<td>Mains outlet</td>
</tr>
<tr>
<td>F5</td>
<td>T 6.3 A/H</td>
<td>Spectrometer</td>
</tr>
<tr>
<td>F6</td>
<td>T 6.3 A/H</td>
<td>Spectrometer</td>
</tr>
</tbody>
</table>

- **Fuses connection strip**
  
  For lamp fuse see 4 in Fig. 28 p.51

<table>
<thead>
<tr>
<th>Fuse number</th>
<th>Type</th>
<th>Protected circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>F7</td>
<td>T 3.15 A</td>
<td>Xenon short arc lamp</td>
</tr>
<tr>
<td>F8</td>
<td>T 3.15 A</td>
<td>Xenon short arc lamp</td>
</tr>
</tbody>
</table>
Service and maintenance

Furnace fuse

For furnace fuse see 8 in Fig. 12 p.34

<table>
<thead>
<tr>
<th>Type</th>
<th>Protected circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR5-T 100 mA</td>
<td>Graphite tube furnace</td>
</tr>
</tbody>
</table>

contrAA 800 F

The fuses of the contrAA 800 F are located at the connection strip (see 4, 6 in Fig. 30 p.52).

<table>
<thead>
<tr>
<th>Fuse number</th>
<th>Type</th>
<th>Protected circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>T 10 A/H</td>
<td>Power supply</td>
</tr>
<tr>
<td>F2</td>
<td>T 10 A/H</td>
<td>Power supply</td>
</tr>
<tr>
<td>F3</td>
<td>T 3.15 A/H</td>
<td>Xenon short arc lamp</td>
</tr>
<tr>
<td>F4</td>
<td>T 3.15 A/H</td>
<td>Xenon short arc lamp</td>
</tr>
</tbody>
</table>

6.2.2 Cleaning the sample chamber

- Clean the sample chamber regularly using a lint-free cloth moistened with alcohol.
- If liquid residue is found in the collection pan, e.g. drained off the siphon, carefully remove the collection pan, drain it and rinse it under a tap.
- If a loss of energy is noticed, check the radiation inlet and outlet windows and clean if necessary.
  In the contrAA 800 D and F remove the heat protection plate (17 in Fig. 42 p. 67).
  Turn the windows to unscrew them from the bayonet lock. Wipe the windows free of streaks with a lint-free cloth soaked in alcohol (optical cloth) and re-insert them.

Note: After cleaning the windows with alcohol it takes approx. 1 h before the complete UV transmission has been restored.

6.2.3 Replacing the Xenon short arc lamp

WARNING

Danger of electric shock!

When prompted by AAspect CS, switch off the contrAA 800 from the mains switch and disconnect it from the mains before replacing the lamp!

WARNING

Danger of explosion!

The lamp bulb is pressurized (1.5-1.6 MPa cold pressure) and might burst. Only handle the lamp bulb in its safety packaging. Always store bulbs in the safety packaging. Analytik Jena recommends wearing face protection during the lamp replacement.

Insert the new Xenon short arc lamp in accordance with specifications in the correct direction and with the correct polarity. Do not allow moisture to enter the housing. Only operate the lamp once it has been inserted into the lamp chamber.

Dispose of bulbs in accordance with the national regulations for high pressure lamps (short arc lamp), paying attention to the packing label supplied. Do not dispose in domestic waste! For queries about disposal please contact the Analytik Jena customer service.
CAUTION
Risk of burns at hot surfaces! During operation the lamp housing may reach temperatures of up to 60 °C. Allow the housing to cool down for a few minutes.

ATTENTION
Avoid contamination of the lamp window!

Do not touch the (quartz glass) lamp window during the lamp replacement. Finger prints may burn in and impair the lamp properties.

Analytik Jena offers a face protection as optional accessory. It is recommended to wear this face protection during the lamp replacement.

Fig. 50   Face protection

The ASpect CS software guides the customer step by step during the replacement of the continuous radiator.

1. Start the ASpect CS software. Start the wizard in the MAIN SETTINGS window using the [LAMP REPLACEMENT] button.

2. Enter the serial number of the new continuous radiator in the wizard.

3. Once prompted, switch off the contrAA 800 and accessories. Disconnect the device from the mains and allow it to cool down for a few minutes.

4. Open the lamp chamber door (at the front, to the left of the sample chamber).
5. Place a cloth or similar under the cooling water couplings. Disconnect the quick-release coupling for cooling water from the underside of the lamp housing.

To disconnect the coupling press the (metal) lock inwards until it releases and pull the coupling down and out.

**Note:** The couplings contain valves that automatically close when disconnected. However, a few drops of water will escape.

6. Using the hexagon socket wrench 5 mm (included in the scope of delivery), fully unscrew the horizontal fastening screw of the lamp housing.

This presses the lamp housing forward on the two guide bolts and disconnects the electrical plug connection (not visible).

7. Hold the lamp housing from the handle with one hand and from the underside with the other and pull it off the guide bolts towards the front.

**Note:** Hold the lamp housing well, it is heavy. Do not touch the lamp window!

8. Place the removed lamp housing on its side.

9. Using the hexagon socket wrench 3 mm (included in the scope of delivery) detach the locking screw for the lamp cathode at the underside of the lamp housing. Do not fully remove the screw.
10. Place the lamp housing upright. Ensure stable support!
11. Using the hexagon socket wrench 3 mm unscrew the lamp handle.

12. Using the hexagon socket wrench 3 mm detach the four screws on the top of the lamp housing.

13. Pull the plate with the lamp bulb and safety packaging upwards out of the housing. In the process push the safety packaging down until the glass bulb is fully covered.

⚠️ WARNING
The lamp bulb is pressurized and might burst. Only handle the bulb with the safety packaging.
   To do so, detach the lid of the safety packaging from the tab and fold it over. Hook the lid into the gap between the lamp and the brass connector.

15. Take the new lamp bulb out of the transport packaging.
   Note: The transport packaging can be used for the safe transport of the old lamp bulb.

16. Pull the foam component off the lamp cathode. Open the safety packaging of the new lamp bulb.
   To do so, pull the cover out of the gap between the lamp and the brass connector and fold it over.
   **WARNING**
   The lamp bulb is pressurized and might burst. Do not remove the safety packaging!

17. Insert the mounting plate with the pre-adjusted lamp bulb from above into the lamp housing.
   Slide the safety packaging over the lamp housing.
Align the mounting plate in such a way that the hole (slot) on the underside meets the positioning pin of the lamp housing.

18. Screw the mounting plate to the lamp housing using the hexagon socket wrench 3 mm.

19. Slide the cover of the safety packaging under the tab.
20. Screw the lamp handle back onto the lamp housing.

21. Place the lamp housing on its side. Using the hexagon socket wrench 3 mm secure the lamp cathode to the underside of the lamp housing.
22. Install the lamp housing back in the lamp chamber. Place the lamp housing onto the guide bolts and slide it back.

Note: Do not touch the lamp window!

23. Using the hexagon socket wrench 5 mm tighten the fastening screw of the lamp housing.

This presses the lamp housing back on the two guide bolts and into the electrical multi-pole plug connection.

Note: The lamp housing must allow tightening without noticeable resistance! Do not use force!

24. Connect the cooling water hoses at the underside of the lamp housing.

To this end insert the plug-in couplings into each counterpart in the lamp housing (left hose – left inlet, right hose – right inlet) and press in up to the stop.

Note: When pressing it in a "click" must be heard, the lock of the quick-release coupling disengages.

25. Switch on the contrAA 800 and wait for the device initialization to complete.

26. Check that the lamp is burning, the recirculation pump is working and cooling water flows back to the cooling water tank.

Note: If no cooling water flows back with the recirculating pump running, one (or both) plug-in couplings are not inserted correctly. In this case switch off the device and disconnect and reconnect the couplings again.

27. Check the filling level in the cooling water tank. Fill the cooling water tank if necessary (→ section "Checking the cooling water level and replacing the cooling water" p.88).

The filling level drops slightly after installing the lamp since the system fills with cooling water. The displaced air escapes after a few seconds via the cooling water tank.

Attach the sealing lid of the cooling water tank and screw it on finger-tight.

28. Wipe away any escaped drops of water and close the lamp chamber door.

✓ The new lamp bulb is operational.

6.2.4 Protection against overheating and uncontrolled furnace heating

The temperature of the cooling water circuit is measured using two safety circuits.

Overheating protection for the Xenon lamp

The first safety circuit automatically switches off the Xenon short arc lamp with a cooling water temperature of ≥60 °C. If the cooling water temperature has dropped below the limit value, the lamp is re-ignited after switching the contrAA 800 back on and initialization.
A second safety circuit protects the contrAA 800 D and G during a possible communication fault between the control (PC) and the AAS against continued uncontrolled heating of the graphite tube furnace. The temperature sensor is located at the rear of the fixed furnace part (7 in Fig. 12 p.34). This safety circuit disconnects the hardware mains connection of the device at a cooling water temperature of ≥95 °C. Device damage from continued heating of the furnace is prevented. Once the cooling water temperature has dropped below the limit value, the contrAA 800 switches back on automatically.

6.2.5 Checking the cooling water level and replacing the cooling water

Check the cooling water level monthly. The tank for the cooling liquid to cool the graphite tube furnace and Xenon short arc lamp is located in the lamp chamber.

Fig. 51 Cooling water tank in the lamp chamber

Filling cooling water

1. Open the lamp chamber door (at the front, to the left of the sample chamber).
2. Fill the cooling water tank with approx. 4 liters tap water up to the "max" marking. Mix very hard tap water (conductivity σ ≥ 1mS/cm) 50/50 with deionized water. Make sure that the rear chamber of the tank is also filled.
3. Screw on the cover finger-tight.
4. Close the lamp chamber door.

Replacing the cooling water

The cooling water must be replaced annually. At the same time the cooling water tank must be cleaned to prevent contamination of the spectrometer. The cooling water tank and pump assembly can be easily removed from the lamp chamber for this purpose.
ATTENTION
Danger of equipment damage!
Add Analytik Jena cooling water additive to the cooling water. Damage at the contrAA 800 due to not having used cooling water additive is excluded from the warranty!

1. Switch off the contrAA 800 and accessories, taking the shutdown sequence into account. Disconnect the contrAA 800 from the mains and allow to cool down for a few minutes.

2. Open the lamp chamber door (at the front, to the left of the sample chamber).

Remove the continuous radiator:

3. Place a cloth or similar under the cooling water couplings.

   Disconnect the quick-release coupling for cooling water from the underside of the lamp housing.

   To disconnect the coupling press the (metal) lock inwards until it releases and pull the coupling down and out.

   Note: The couplings contain valves that automatically close when disconnected. However, a few drops of water will escape.

4. Using the hexagon socket wrench 5 mm (included in the scope of delivery), fully unscrew the horizontal fastening screw of the lamp housing.

   This presses the lamp housing forward on the two guide bolts and disconnects the electrical plug connection (not visible).

5. Hold the lamp housing from the handle with one hand and from the underside with the other and pull it off the guide bolts towards the front.

   Note: Hold the lamp housing well, it is heavy.

   Do not touch the lamp window!

6. Safely put the removed lamp housing aside.
Removing and cleaning the cooling water tank assembly:
7. Detach the hose connection at the rear of the cooling water tank from the snap fasteners.
8. Detach the pump connector from the rear panel.

9. Detach the screws securing the assembly (see arrows).
10. Lift the assembly out of the lamp chamber.
11. Drain the cooling water tank. Clean with hot water and detergent. Rinse with tap water.

Reinstalling the cooling water tank assembly:
12. Insert the assembly into the lamp chamber.
13. Tighten the 3 screws securing the assembly.
14. Plug in the pump connector.
15. Plug in the hose connection at the rear of the cooling water tank.
   To do so, plug the plug-in coupling of the hose into its counterpart at the cooling water tank and press in up to the stop.

Note: When pressing it in a "click" must be heard, the lock of the connection piece disengages.
Reinstalling the continuous radiator:
16. Insert the continuous radiator into the lamp chamber.
17. Using the hexagon socket wrench 5 mm tighten the fastening screw of the lamp housing.
   This presses the lamp housing back on the two guide bolts and into the electrical multi-pole plug connection.
   Note: The lamp housing must allow tightening without noticeable resistance! Do not use force!
18. Connect the cooling water hoses at the underside of the lamp housing.
   To this end insert the plug-in couplings into each counterpart in the lamp housing (left hose – left inlet, right hose – right inlet) and press in up to the stop.
   Note: A "click" must be heard when it engages.

Refilling the cooling water tank:
19. Dissolve 100 mL of the Analytik Jena cooling water additive in 4 L tap water. Mix hard tap water (≥ 1mS/cm) 50/50 with deionized water.
20. Fill the cooling water tank with the prepared solution up to the "max" marking. Make sure that both chambers of the tank are filled.
21. Attach the cover to the cooling water tank and screw it on finger-tight.
   ✓ The contrAA 800 can be re-commissioned.

6.2.6 Replacing the air filter

Air for spectrometer purging is aspired from the rear wall into the device interior through the air filter (7 in Fig. 27 p.50 or 2 in Fig. 29 p.51) and the integrated compressor. The air filter acts as a dust filter. It must be checked regularly for contamination. In very dusty environments (e.g. a mine) the inspection must be performed daily. The air filter must be replaced as required but no later than after 12 months.
6.2.7 Checking the gas connections for leaks

The gas connections (at the rear of the device) must be checked for leaks:

- Weekly as a safety check
- If a gas connection was opened during re-commissioning

To check for leaks, close the stop cock of the gas supply system and monitor the pressure indication in the downstream manometer. If the pressure drops significantly, look for and fix the gas leak as follows:

1. Brush connections with a heavily foaming liquid (e.g., soap solution). If bubbles form in the gas supply during commissioning, switch off the contrAA 800 and disconnect the gas supply.
3. Tighten gas connections manually or with a suitable open-ended wrench, ensuring correct fit.
4. Re-check the gas connections for leaks.

6.3 Aligning the atomization unit in the beam path

**WARNING**

Danger of UV radiation being reflected!

A maladjustment of the atomization unit may result in UV radiation emerging from the sample chamber. Carefully align the atomization unit in the beam path.

Conversion and maintenance work in the sample chamber may lead to a maladjustment of the atomization unit in relation to the sample chamber depth. If the atomization unit is maladjusted, the beam path no longer optimally strikes the atomized sample and the downstream optics. The quality of analytical detection suffers. With extremely severe maladjustment the UV radiation may be reflected of the atomization unit. Dangerous UV radiation may escape from the sample chamber.
Alignment in the contrAA 800 D

In the contrAA 800 D the atomization unit is automatically aligned in the sample chamber depth.

- The ASpect CS control software automatically checks the position of the atomization unit and corrects it if necessary before starting a measurement.
- If the atomization unit has been severely maladjusted due to manual intervention, the ASpect CS control software automatically performs a re-initialization. To this end some accessories, such as autosampler, must be removed. The software will issue the corresponding prompts.
- If the atomization unit is maladjusted during an ongoing measurement, e.g. by an impact, stop and restart the measurement manually.

Alignment in the contrAA 800 F + G

In the contrAA 800 F and G the atomization unit can be aligned in the sample chamber depth via an adjustment screw.

Fig. 52  Adjustment screw for aligning the atomization unit

- In the contrAA 800 F the alignment must always take place after conversion and maintenance at the burner-nebulizer system or at the cell unit. The sample chamber depth must be optimally adjusted to the position of the corresponding accessories (different burners, cell units).
- In the contrAA 800 G the factory adjustment can be used for all measuring tasks. Conversion and maintenance consists of only a few interventions in the graphite tube furnace. The risk of maladjustment can be precluded in this model.

Depth adjustment in the contrAA 800 F

1. In the ASpect CS software initialize the flame technique and use the button to open the FLAME / CONTROL window.
2. In the group field SETTINGS adjust the ratio Gas C2H2 – oxidant (air or N2O).
3. Use the [IGNITE FLAME] button to ignite the flame.
4. Change to the MANUAL OPTIMIZATION tab.
5. Select an element line, e.g. Cu324, and click on [SET].

6. Aspirate a test solution, e.g. Cu / 2 mg/L, via the nebulizer and start the continuous measurement value display with [START]. Evaluate the signal.

7. If the required sensitivity is not achieved, change the position of the adjustment screw with a screwdriver until the absorbance reaches a maximum at the selected element line.

Note: The height of the atomization unit is automatically set in all three device models after selecting the atomization technique in the MAIN SETTINGS window.

6.4 Graphite tube furnace

After a prolonged operation time, sample residues, modifiers and sublimated carbon from the graphite tube is deposited on the contact surfaces of the electrodes, the furnace jacket, the radiation sensor and the pipetter insert. These deposits may lead to deviations in the effective tube temperature and contaminate the analysis samples. Damage to the furnace, ceramic ring, graphite tube or electrodes may also cause poor analysis results.

CAUTION
Risk of burning at the hot furnace!
Allow the graphite tube furnace to cool down before attempting any service or maintenance work.

6.4.1 Cleaning the furnace windows

ATTENTION
Do not touch the quartz panes of the furnace windows with your bare fingers. Fingerprints burn in.
Do not clean the furnace windows in an ultrasonic bath. This may lower the UV permeability of the windows.
Danger of brittleness for rubber seals. When cleaning the furnace windows with a cloth soaked in alcohol, make sure that the rubber seals do not come in contact with the alcohol.

The furnace windows must be cleaned weekly streak-free with a lint-free cloth soaked in alcohol (optical cloth). Note: After cleaning the furnace windows with alcohol it takes approx. 1 h before the complete UV transmission has been restored. A mild surfactant should be used to clean stubborn contamination. Prepare the cleaning solution: Use a mixture of demineralized water and 1 Vol% cleaning solution.

1. Pull off the furnace windows by hand with a twisting motion. Do not touch the windows!
2. Fill a beaker with cleaning solution until the furnace windows are fully immersed in the solution.
3. Allow the solution to take effect for approx. 30 min at 25 to 30 °C.
4. Take the furnace windows out of the cleaning bath (e.g. using plastic tweezers, do not touch the optical surfaces) and rinse with demineralized water \((\sigma < 1 \, \mu\text{S/cm})\).

5. Blow dry with compressed air or argon.

6. Re-insert the furnace windows.
   Identical markings must point up (→ Fig. 53)!
   If the furnace windows are too loose or if the sealing rings of the furnace windows exhibit brittleness and cracks, replace the sealing rings.
   ✓ The furnace windows are cleaned and re-installed.

![Fig. 53 Markings at the furnace windows](image)

6.4.2 Cleaning the graphite surfaces

After using the device, the graphite surfaces must be cleaned daily.

1. Switch on the contrAA 800 and start the ASpect CS software (the movable furnace part must be pressurized to be opened/closed).

2. In ASpect CS open the window FURNACE with . Go to the CONTROL tab.

3. Open the furnace with the [OPEN FURNACE] button.

4. Remove the pipetter inset from the furnace jacket part and clean in 0.1-1 molar \(\text{HNO}_3\).
   Then rinse with slightly acidic or demineralized water.

5. Clean the contact surfaces of the electrode in the movable furnace part with a cotton swab, a lint-free cloth soaked in alcohol, or blotting paper.

6. Clean inner surfaces of the furnace jacket with a cotton swab.

7. Close the graphite tube furnace via [CLOSE FURNACE].
   ✓ The graphite tube furnace is operational again.
6.4.3 Cleaning and changing the graphite tube

Clean the graphite tube
- Clean the graphite tube daily through clean out.
  For the work steps see chapter "Cleaning / clean out of the graphite tube" p. 61.

Cleaning the coated graphite tube
- Clean the coated graphite tube in HydrEA technique through clean out.
  For the work steps see chapter "Cleaning / clean out of the graphite tube" p. 61.

Evaporating the iridium coating
- Evaporate the iridium or gold coating from the graphite tube after approx. 500 atomizations or before recoating.
  For the work steps see chapter "Cleaning / clean out of the graphite tube" p. 61.

Replacing the graphite tube
- The graphite tube must be replaced if it shows clear burn out or no longer meets analytic requirements. The pyrolysis coating is then worn out.
  If the formatting factor is outside of tolerances, an automatic temperature correction no longer takes place; the graphite tube can then only has limited use. The graphite tube should be replaced. The ASpect CS software then issues a corresponding onscreen prompt.
  For the work steps see chapter "Inserting the graphite tube into the furnace" p. 58.

6.4.4 Replacing the electrodes and furnace jacket

Electrodes and furnace jacket must be replaced if consistently poor analytic results occur that cannot be corrected by cleaning and replacing the graphite tube.

Fig. 54 Electrodes and graphite tube jacket

You can arrange for this work to be done during the regular maintenance by Customer Service. To do your own maintenance you need the optionally available furnace tools.
ATTENTION

For improved visibility of the individual work steps the series of photos below shows a removed graphite tube furnace. However, it is not necessary for maintenance to remove the graphite tube furnace from the sample chamber of the contrAA 800.

1. Switch on the contrAA 800 and start the ASpect CS software (the movable furnace part must be pressurized to be opened/closed).

2. In ASpect CS initialize the graphite tube technique and open the window FURNACE / CONTROL with 📑.

3. Open the furnace with the [OPEN FURNACE] button.

4. Remove the graphite tube from the open graphite tube furnace with tweezers. Wear gloves during removal.

5. Unscrew the covering screw from the movable furnace part.

6. Pull out the lock pin for the movable furnace part and fold the movable furnace part all the way down.
7. Release the insulating ring carefully with the pin wrench and unscrew it completely by hand.

Risk of fracture within the insulating ring! Do not wedge the pin wrench!

8. Screw the press-out tool with the spindle turned back to the stop into the movable furnace part.

Press out the electrode completely with the ratchet wrench.

Remove the press-out tool again from the furnace part.

9. Pull the furnace windows off the furnace jacket. Remove the pipetter insert.

10. Remove the three gas hoses. To this end press in the quick-release lock and pull off the hose.

Carefully unscrew the three gas connectors with the hexagon socket wrench. To this end insert the hexagon socket wrench into the gas connectors and turn them counterclockwise.
11. Detach the union nut at the cooling water temperature sensor.
   Pull the sensor out of the sensor sleeve at the rear of the fixed furnace part.
12. Unscrew the sensor sleeve carefully by hand.

13. Screw the press-out tool with the spindle turned back to the stop into the fixed furnace part.
   Using the ratchet wrench fully press out the furnace jacket and electrode.
   Loosen the press-out tool and unscrew it again fully.

14. Position a new electrode parallel to the fixed furnace part and secure it with the inserting tool (small bracket).
15. Using the ratchet wrench insert the electrode up to the stop.
   Loosen the inserting tool and remove it.

   **Risk of electrode fracture!**
   Make sure that the electrode and the furnace part are parallel when positioning and inserting the electrode. If the electrode jams, remove the electrode and start again.
16. Align the furnace jacket with the cylindrical adapter parallel to the furnace body and fasten it with the inserting tool (large bracket).

17. Insert the furnace jacket to the stop. Loosen the inserting tool and remove it.

**Risk of furnace jacket fracture!**
During insertion always ensure that the furnace jacket and the furnace part are parallel. If the furnace jacket jams, press it out completely and start again.

18. Screw the sensor sleeve for the cooling water temperature sensor carefully by hand into the fixed furnace part.

19. Insert the sensor into the sensor sleeve and tighten it with the union nut.

20. Check the sealing rings of all three gas connectors and replace if damaged.

21. Screw the gas connectors for the outer gas flow transversely from below finger-tight into the fixed furnace part.

*Attach the white gas hose to the gas connector.*
22. Screw the two other connectors (for the inner gas flow) on both sides into the furnace jacket.

Attach the two black gas hoses to the gas connectors.

23. Position a new electrode parallel to the movable furnace part and secure it with the inserting tool (small bracket).

Insert the electrode to the stop into the furnace jaw using the ratchet wrench.

**Risk of electrode fracture!**
Do not wedge the electrode.

Remove by suction or blow away any graphite dust which is present.

24. Attach the furnace windows to the furnace jacket. Insert the pipetter insert.

**Note:** Identical markings at the furnace windows must point up (see Fig. 53 on page 96).

25. Screw in the insulating ring by hand and tighten it moderately up to the stop using the pin wrench.

**Risk of fracture within the insulating ring!**
Do not wedge the pin wrench!

26. Insert the locking pin into the furnace jaw and connecting rod (arrow) up to the stop. The connecting rod must be in the front position.
27. Screw the covering screw to the movable furnace part.

28. Close the furnace with the [CLOSE FURNACE] button.
   ✓ The electrodes and furnace jacket are fully installed in the graphite tube furnace.

   Prior to re-commissioning of the furnace insert the graphite tube into the furnace (→ section "Inserting the graphite tube into the furnace" p.58). Form the graphite tube.

6.5 Burner-nebulizer system

The burner-nebulizer system must be cleaned at regular intervals, which can be seen from the following indications:

- Irregularities in the flame hem of the burner flame. Washing with diluted acid in the active program and blowing the burner out does not bring about any improvement.
- The sensitivity given in the cookbook for an individual element is not achieved despite changing the composition of the gas.
- Build-up on the burner slit, which occurs during analysis of solutions with a high salt content, cannot be removed with the cleaning strips.

CAUTION

Risk of burns!
Allow the burner to cool down before attempting any service or maintenance work.

Undertake the following maintenance work to the burner-nebulizer system:

1. Taking the burner-nebulizer system apart
2. Cleaning the burner
3. Cleaning the nebulizer
4. Cleaning the siphon
5. Cleaning the mixing chamber
6. Assembling the burner-nebulizer system
7. Optimize the sensitivity of the burner-nebulizer system.
6.5.1 Taking the burner-nebulizer system apart

![Burner-nebulizer system diagram]

**Fig. 56 Burner-nebulizer system**

1. Burner
2. Lock screw at the burner
3. Mixing chamber tube
4. Mixing chamber screw joints (4 x)
5. Locking ring for nebulizer
6. Siphon sensor connection
7. Clamping screw of the siphon
8. Nebulizer
9. Outlet tube from the siphon
10. Siphon sensor
11. Screwed tube connections on the mixing chamber head and the nebulizer
12. Safety plug
13. Hose screw joint at the mixing chamber head
14. Knurled head screw on the mounting bracket
Fig. 57 Mixing chamber and nebulizer disassembled for cleaning

1. Safety plug  
2. Mixing chamber tube  
3. Mixing impeller  
4. Mixing chamber head with connections for gases, nebulizer and siphon  
5. Connections for additional oxidant and combustion gas (pointing to the rear)  
6. Nebulizer connection with locking ring  
7. Baffle ball  
8. Nebulizer with connection for oxidant and connection for sample tube  
9. Siphon  
10. Siphon sensor

Fig. 58 Withdrawing the nebulizer from the mixing chamber

1. Loosen the lock screw (2 in Fig. 56 p. 104) on the burner and remove the burner from the burner neck.  
2. Unscrew the screwed tube connections on the mixing chamber head and the nebulizer (11, 13 in Fig. 56) and pull off the sample intake tube from the nebulizer.  
3. Turn the locking ring of the nebulizer (5 in Fig. 56) to open the locking.
4. Withdraw the nebulizer from the mixing chamber head, holding the nebulizer in the groove (Fig. 58).
   **Risk of fracture for the connector!**
   The connector for the gas connection may break when being pulled.

5. Unscrew and pull off the siphon sensor from the connection in the sample chamber wall (6 in Fig. 56).

6. Remove the draining hose from the drainage connector of the siphon (9 in Fig. 56). Release the hose clamp to do so.

7. Release the clamping screw of the siphon (7 in Fig. 56) and pull off the siphon downwards. Empty the siphon.
   **CAUTION**
   The solution in the siphon is acidic. Wear protective goggles and clothing.

8. Unscrew the insert of the siphon sensor, pull the sensor out of the siphon (10 in Fig. 57).

9. Hold the system tightly, unscrew the knurled head screw on the mounting bracket of the mixing chamber tube (14 in Fig. 56), rotate the mounting bracket backwards and remove the system.

10. Withdraw the safety plug (1 in Fig. 57) from the mixing chamber.

11. Loosen the four screw joints of the mixing chamber (4 in Fig. 56) and disassemble the mixing chamber into the chamber head and the chamber tube.

12. Remove the mixing impeller (3 in Fig. 57) from the chamber tube.

13. Unscrew the gas connections for fuel gas and auxiliary oxidant (5 in Fig. 57) from the mixing chamber head.

### 6.5.2 Cleaning the burner

1. Clean the burner under running water.

2. Clean the burner with the burner jaws facing downwards in an ultrasonic bath for 5 – 10 min with diluted HNO₃ (c = 0.1 mol/L). If there is no ultrasonic bath: Place the burner overnight in diluted HNO₃.
   **Do not use hydrochloric or hydrofluoric acid as they might damage the burner!**

3. Rinse the burner with distilled water. Let the burner dry.

Perform the following working steps only when hard deposits haven’t been removed by the procedure described above.

1. Undo the fittings (item 2 in Fig. 59) of the burner jaws on the burner body and remove the burner jaws.

2. Undo the screw joints of the burner jaws against each other (1, 3 in Fig. 59).

3. Remove incrustations with the cleaning tips (paper strips).

4. Clean the burner jaws in 0.1 molar HNO₃, and then rinse with distilled water.

5. Screw the burner jaws together, making sure that the ends of the spacers on the burner slit extension and the end faces are flush.
Note: The spacers must not be removed and must not protrude beyond the upper surface of the burner jaws (arrows in Fig. 61)! When using a scraper, it remains attached.

6. Screw the burner jaws onto the burner body, the dowel pins (4 in Fig. 59) on the burner ensure correct positioning.

ATTENTION

Risk of destruction for the scraper!

If the spacers protrude beyond the upper surface of the burner jaws, the scraper can get caught and burn.
6.5.3 Cleaning the nebulizer

1. Place the nebulizer for several minutes into an ultrasonic bath with approx. 1 % nitric acid or organic solvent (isopropanol).

2. Turn the baffle ball (7 in Fig. 57 p. 104) slightly and pull it off the nebulizer. If the baffle ball is seized, place the nebulizer back into the ultrasonic bath for another few minutes.

3. Insert the cleaning wire into the nebulizer cannula and clean the cannula by moving it up and down several times.

4. Attach the baffle ball on the nebulizer and lock it by turning slightly.

6.5.4 Cleaning the mixing chamber

Clean the mixing chamber, consisting of the chamber tube and the chamber head, as follows:

1. Remove the sealing rings from the chamber head.

2. Clean with diluted mineral acid (HNO₃, HCl, H₂SO₄) or, dependent on the substances analyzed, with the appropriate organic solvents.

3. If the mixing chamber is cleaned with diluted acid, rinse thoroughly with distilled water afterwards.

6.5.5 Cleaning the siphon

1. Clean with diluted mineral acid or, dependent on the substances analyzed, with the appropriate organic solvents. Clean the channels and float tank with a round brush.

2. If the siphon is cleaned with a diluted mineral acid, rinse thoroughly with distilled water afterwards.
6.5.6 Assembling the burner-nebulizer system

**WARNING**

Risk of explosion if gas connections are leaking!

When connecting the supply tubes, ensure correct connection. Insert the seals and check for air-tightness. Only tighten all screw joints finger-tight.

1. Check all sealing rings of the chamber head, connections and the nebulizer, replace worn out sealing rings, pull on seals and ensure correct positioning.

2. Hold the mixing impeller at the handle (3 in Fig. 57 p. 105) and insert it into the mixing chamber tube. Lock by pressing slightly.

3. Connect the mixing chamber parts (chamber tube and chamber head), align the sides so that they are flush and screw them together (2, 4 in, p. Fig. 57). Ensure that the sealing rings are seated correctly.

4. Screw the siphon sensor (10 in Fig. 57 p. 104) into the siphon. Attach the siphon to the chamber head with the drainage connector pointing forward. Secure the siphon with a clamping screw (7 in Fig. 56).

5. Attach the safety plug (1 in Fig. 57) on the chamber tube.

6. Screw the connections for fuel gas and auxiliary oxidant (5 in Fig. 57) with the sealing rings into the mixing chamber head.

7. Insert the nebulizer (8 in Fig. 57) into the chamber head and secure it with the locking ring (6 in Fig. 57).
   
   **Note:** If the nebulizer cannot be stuck easily into the chamber head, slightly grease the sealing rings with the lubricant supplied (Apiezon grease).

8. Attach the mixing chamber nebulizer system to the height adjustment in the sample chamber using the mounting bracket (14 in Fig. 56). The marking must be above the edge of the holding fixture. The plate of the mixing chamber tube must make contact with the mount. Screw the knurled head screw at the holding bow tightly.

9. Plug the cable of the siphon sensor (6 in Fig. 56) into the connection at the side panel of the sample chamber (take care with the lug) and tighten.

10. Attach the drain hose to the drainage connector of the siphon (9 in Fig. 56). Secure with a hose clamp. Feed the drain hose with a steady inclination into the waste bottle.

11. Fill the siphon with water via the mixing chamber tube until water flows out via the drain hose.

12. Set the burner on the mixing chamber tube and turn against the 0° stop. Clamp on using the locking screw (2 in Fig. 56).

13. Screw the hose for fuel gas (red) to the connector at the top of the mixing chamber head (13 in Fig. 56).

14. Screw the hose for oxidant (blue) to the nebulizer connector (11 in Fig. 56 p.)

15. Screw the hose for auxiliary oxidant (black) to the connector at the side of the mixing chamber (11 in Fig. 56 p.)

16. Hang the safety glass in and slide it in front of the burner.
1. In the ASpect CS software initialize the flame technique and use the button to open the FLAME / CONTROL window.
2. In the group field SETTINGS adjust the ratio Gas C2H2 – oxidant (air or N2O).
3. Use the [IGNITE FLAME] button to ignite the flame.
4. Change to the MANUAL OPTIMIZATION tab.
5. Select an element line, e.g. Cu324, and click on [SET].
6. Aspirate a test solution, e.g. Cu / 2 mg/L, via the nebulizer and start the continuous measurement value display with [START]. Evaluate the signal.
7. If the required sensitivity is not achieved, adjust the nebulizer until the absorbance reaches a maximum at the selected element line.
   - Loosen the lock nut (2 in Fig. 62).
   - Adjust the depth of the cannula with the adjustment nut (3 in Fig. 62).

After completing the adjustment, secure the adjustment with lock nut.

✓ The burner-nebulizer system has been cleaned and installed.

1 Baffle ball
2 Lock nut
3 Adjustment nut for cannula
4 Inner cannula
5 Connection for oxidant

Fig. 62  Nebulizer components

6.5.7 Cleaning the sensor for burner detection

Sensors monitor whether the burner has been placed onto the mixing chamber neck before the flame is ignited. The sensor openings must be cleaned if

- deposits are found in the openings (e.g. salt incrustations)
- the program issues an error message although the burner has been mounted onto the mixing chamber tube

1. Hold the burner-nebulizer system tightly, unscrew the knurled head screw on the mounting bracket of the mixing chamber tube (14 in Fig. 56), rotate the mounting bracket backwards, remove the system and deposit it safely.
2. Carefully clean the sensor opening with a small brush (e.g. toothbrush) with alcohol. e.g. isopropanol.
3. Allow the sensor opening to dry.

Refit the burner-nebulizer system into the height adjustment.

✓ The sensor has been cleaned, the burner-nebulizer system is re-installed.
6.6 Autosampler graphite AS-GF

The following maintenance work must be performed on the AS-GF:

- Remove any contamination from the sample tray and the casing with a dry cloth on a daily basis
- Clean, shorten, replace the dosing tube
- Replace the dosing syringe
- Clean the housing once the wash cup has overflowed

6.6.1 Washing the dosing tube

The dosing tube must be washed prior to and after work. Washing solution is taken software-controlled from the storage bottle, pumped via the dosing syringe into the dosing tube and dispensed into the wash cup.

1. Switch on the contrAA 800 and start the ASpect CS software./graphite technique:
2. In ASpect CS open the window AUTOSAMPLER with .
3. Use the [WASH] button to start the wash cycle.
4. During the wash process the dosing tube must be immersed in the wash cup until just below the hose guide to ensure adequate washing.
   Note: If the dosing tube is not immersed sufficiently into the wash cup during washing, the autosampler must be realigned in the wash position.
   - On the FUNCTION TESTS tab enable the [ADJUST SAMPLER] button.
   - In the ADJUST SAMPLER window in the group field ALIGNMENT POSITION enable the option WASH POSITION. In the group field WASH POSITION ADJUSTMENT enter the immersion depth in the list field (approx. 40 mm).
   - Correct the alignment of the swivel arm with the arrow keys.
   - Save the settings via the corresponding buttons and close the window.
   Note: When opening the ADJUST SAMPLER window again, DEPTH displays a value of 13 MM, not the actually saved value.
5. The wash cycle can be repeated several times if required.
   Note: The wash cycle can be defined in the method and thus performed automatically prior to and after the measurement.
If a method is active, pressing the [WASH] button in the AUTOSAMPLER window results in the processing of the number of Wash cycles set in the method.

![Fig. 64 Window AUTOSAMPLER, tab FUNCTION TESTS](image1)

![Fig. 65 Window ADJUST SAMPLER](image2)

### 6.6.2 Servicing the dosing tube

A damaged, kinked or contaminated dosing tube can be the cause of distorted measurement results. Maintenance work is:

- Cleaning the dosing tube
- Shorten the dosing tube
- Replace the dosing tube
Cleaning the dosing tube

The dosing tube requires cleaning, dependent on the sample material, when:

- The pH levels of the sample, the wash liquid and the air bubble are blurred, or if the bubble is segmented.
- The sample is carried over because the tube is contaminated on the inside.

An 8 to 13% sodium hypochlorite solution (NaOCl) is recommended as a cleaning solution. Repeat the cleaning process several times if required.

1. Fill the sodium hypochlorite solution into a 5 mL special cup and mount tray position 101 with it.
2. Switch on the contrAA 800 and start the ASpect CS software.
3. In ASpect CS open the window AUTOSAMPLER with . Change to the tab FUNCTION TESTS (Fig. 64 p. 112).
4. In the group field TRACKER/ROTATOR enter "101" in the field and enable the option CUP NO.
   The autosampler arm moves to position "101".
5. In the area DIPPING ARM in the list field DEPTH lower the autosampler arm into the special cup with the arrow keys (approx. 50 mm).
   **Note:** The autosampler is only lowered if the arrow keys are used. After entering the value directly into the list field, click the arrow keys once again!
6. In the PIPETTER area, in the VOLUME [µL] list field, use the arrow keys to set the volume to be taken (approx. 100-200 µL). The volume can be set in steps of 50 µL.
7. Press the button [TAKE UP]. The autosampler fills the dosing tube with the cleaning liquid.
8. Allow the cleaning liquid to work for approx. 20 min.
9. In the area TRACKER/ROTATOR enable the option WASH POSITION.
10. The autosampler arm moves to the wash position.
11. In the area DIPPING ARM in the list field DEPTH lower the autosampler arm into the wash cup with the arrow keys (approx. 40 mm). When entering the value directly into the list field, click the arrow keys once again!

12. Use the [DISPENSE] button to empty the dosing tube into the wash cup.

   ✓ The dosing tube has been cleaned.

### Shortening the dosing tube

1. Loosen the clamp nut at the tube guide (6 in Fig. 66) and remove the dosing tube by pulling upwards.

2. Cut off approx. 70 mm of the dosing tube with a razor blade or a scalpel at an angle of 10° to 15°.

3. Push the dosing tube as far as possible into the tube guide until the dosing tube protrudes by approx. 8 mm at the bottom.

4. Lock the dosing tube with the clamp nut.

5. Readjust the injection depth of the sample (→ section Adjusting the sampler p. 64).
   ✓ After removing contaminated or damaged hose sections, the autosampler is operational again.

### Replace the dosing tube

1. Loosen the clamp nut at the tube guide (6 in Fig. 66) and pull out the tube. Remove the tube from the tube holders at the sample arm and the back of the autosampler (1, 3 in Fig. 66).

2. Detach the screw top from the T valve of the dosing unit (4 in Fig. 66).

3. Screw the new dosing tube to the valve and feed it through the tube holders.

4. Push the dosing tube as far as possible into the tube guide until the dosing tube protrudes by 8 mm underneath, lock with the clamping nut.

5. Readjust the injection depth of the sample (→ section Adjusting the sampler p. 64).
   ✓ The autosampler is operational with a new dosing tube.

### 6.6.3 Replacing the dosing syringe

The details below apply to the samplers AS-GF (graphite tube technique) and AS-FD (flame technique). The dosing units only differ in the size of the dosing syringe (500 or 5000 µL).

1. Switch on the contrAA 800 and start the ASpect CS software. Select the technique in the MAIN SETTINGS window. GRAPHITE FURNACE (AS-GF) or FLAME (AS-FD).

2. Use to open the AUTOSAMPLER window. Change to the tab FUNCTION TESTS.

3. In the PIPETTER area, in the VOLUME [µL] list field, use the arrow keys to set a volume to be picked up (AS-GF: 500 µL; AS-FD: 5000 µL). Increase the speed to 6-7.
4. Press the button [TAKE UP].
   The piston of the dosing syringe moves down.

5. Unscrew the fixing screw (3 in Fig. 67).

6. Unscrew and remove the dosing syringe (2 in Fig. 67).

7. Screw the new dosing syringe to the valve.

8. Carefully pull the piston down until the eyelet at the piston end is aligned with the hole in the drive rod.
   Screw the piston with the fastening screw finger-tight to the drive rod.

   ATTENTION
   Excessive force can lead to material damage! Do not tighten the screw too much.

9. In the AUTOSAMPLER window click the [INITIALIZE] button.
   The piston of the dosing unit returns to the initial state.
   ✓ The autosampler is operational with a new dosing syringe.

6.6.4 Cleaning the autosampler after cup overflow

If during the process a wash cup has overflowed, immediately interrupt the process and clean the device.

1. Instantly stops the analysis process.

2. Take up the liquid with cellulose wadding or cloth. Wipe the device surface dry.

3. Ensure that the outlet can be drained, i. e., remove any sharp bends in the draining tube or make sure that the draining tube does not dip into the liquid in the waste bottle.
   ✓ The analysis process can continue.
6.7  Flame sampler AS-F, AS-FD

Contamination on the tray and the casing can be removed with a dry cloth on a daily basis as required. In addition according to conditions:

- Washing the sample paths
- Wash the mixing cup
- Replace the cannula(s) at the autosampler arm
- Replace the aspiration tube and dosing tube
- Replace the dosing syringe (→ section "Replacing the dosing syringe" p. 114).
- Clean the housing after a wash or mixing cup has overflowed.

6.7.1  Washing the sample paths

1. In ASpect CS software / Flame technique open the FLAME / CONTROL window with and ignite the flame via the button.
2. Use to open the AUTOSAMPLER window.
3. On the PARAMETERS tab, set approx. 60 s in the WASH TIME field.
4. Use the [WASH] button to start the wash cycle.
   ✓ The cannula of the autosampler dips into the wash cup. The wash liquid is aspirated through the system.

6.7.2  Washing the mixing cup of the AS-FD

The mixing cup must be washed before and after the operation to prevent adhesion and scaling. Before measuring the first standard / first sample the mixing cup is washed automatically. Further washing processes might be useful during continuous operation.

Washing the mixing cup
prior to/after the measurement

1. In ASpect CS / Flame technique open the window AUTOSAMPLER with.
2. On the PARAMETERS tab in the WASH MIX CUP group field, enter a volume of 25 mL.
3. Use the [START] button to start the wash cycle.
4. The wash cycle can be repeated several times if required.
   25 mL of washing liquid is dispensed from the storage bottle into the mixing cup and automatically drained off afterwards.

Washing the system prior
to decommissioning

If salts were added to the diluent (demineralized or acidic demineralized water), the dosing unit and valve must be washed with methanol or ethanol prior to extended periods of decommissioning. Otherwise incrustations and blocking may also occur.

1. Fill the storage bottle for the diluent with methanol or ethanol.
2. Perform the wash cycle as described in Section "Washing the system prior / after the measurement". Repeat the washing process several times.
6.7.3 Replacing the cannulas and guide at the AS-FD

The cannulas and guide must be replaced if there is a significant contamination or mechanical damage (detectable by large standard deviations in the measurements).

1. Pull the hoses off the cannulas.
2. Detach the locking screw at the autosampler arm.
3. Pull the cannula guide with cannulas up and out.
4. Insert new cannulas with guide into the opening in the autosampler arm and secure with the lock screw.

ATTENTION
Risk of fracture! Set the cannula height for them to terminate 1-2 mm above the block with the wash and mixing cup.

5. Plug the sample intake tube onto the thinner cannula. Plug the dosing tube for the diluent onto the thicker cannula.
   ✓ The autosampler is operational with new cannulas.

6.7.4 Replacing the cannula at the AS-F

The cannulas for picking up the sample must be replaced if there is a significant contamination or mechanical damage (detectable by large standard deviations in the measurements). The cannula can be replaced with and without guide.

1. Pull the intake tube off the cannula.
2. Loosen the lock screw at the autosampler arm and pull out the cannula (with guide).
3. Insert the new cannula (with guide) at an equal distance and fix with the lock screw.

ATTENTION
Risk of fracture! Set the cannula height for it to terminate 1-2 mm above the washing cup.

4. Plug the intake tube onto the new cannula.
   ✓ The autosampler AS-F is operational with a new cannula.

6.7.5 Replacing the intake tube

If the sample intake tube is contaminated, it must be replaced.

1. Pull off the intake tube from the thinner cannula at the autosampler arm and then from the nebulizer cannula.
2. Cut a new tube to the required size and attach it on both cannulas at the autosampler arm and nebulizer.
6.7.6 Replacing the tube set at the AS-F

1. Pull the dosing tube for diluent (8 in Fig. 44 p. 70) off the thicker cannula at the autosampler arm and feed it through the tube guide.
2. Detach the tube for the washing liquid from the screw at the rear of the autosampler (5 in Fig. 45 p. 72).
3. Pull the encased tubes out of the attachment lug at the rear of the autosampler.
4. Pull the tube for the washing liquid off the storage bottle.
5. Unscrew the dosing tube from the change-over valve (3 in Fig. 46 p. 73).
6. Screw the new tube set with dosing tube (marking "1") to the change-over valve and attach the encased tubes with the attachment lug to the rear of the autosampler.
7. Insert the tube with the marking "2" into the storage bottle for the washing liquid.
8. Screw the other end of the tube for the washing liquid to the rear of the autosampler.
9. Slide the other end of the dosing tube through the tube guide onto the thicker cannula of the autosampler arm.

✓ The autosampler AS-FD is operational with a new tube set.

6.7.7 Cleaning the autosampler after cup overflow

If during the process the washing cup or mixing cup (with AS-FD) has overflowed, interrupt the process and clean the device.

1. Stop the measuring process immediately.
2. Take up the liquid with cellulose wadding or cloth. Wipe the device surface dry.
3. **Wash cup:** Ensure that the outlet can be drained, i.e., remove any sharp bends in the draining tube or make sure that the draining tube does not dip into the liquid in the waste bottle.

**Mixing cup (only in AS-FD):**

Use to open the AUTOSAMPLER window. Change to the tab FUNCTION TESTS. Enable the MIX CUP PUMP checkbox in the PUMPS group field to start the pump. Allow the pump to run until the liquid has been pumped out. Disable the MIX CUP PUMP checkbox to stop the pump.

✓ The measuring process can continue.
6.8  Piston compressor PLANET L-S50-15

(Selected technique: Flame technique

**Note:** Please observe the maintenance and care instructions in the separate instruction manual of the compressor.

- Pressure reservoir and liquid separator at the filter pressure reducer:
  Drain oily condensate weekly from the pressure vessel (boiler) by opening the drain cock.
  **Caution! Danger of splashing!**
  The boiler is pressurized. To avoid splashing, attach a hose to the cock, slowly open the cock and carefully drain liquid into a waste bottle.
  Drain oily condensate weekly from the filter pressure reduce by pressing the pin at the bottom of the fluid separator.

- Intake filter:
  Check the filter monthly, clean or replace semi-annually.

- Oil:
  Only use the special oil SE -32! Dispose waste oil in accordance with regulations.
  Check the oil level weekly at the inspection glass. Replenish oil if necessary. Change the oil every 12 months.
  - To do so remove the ribbed cover after detaching the 4 screws.
  - Tilt the container to allow the oil to drain completely. Protect the motor block with one hand against falling out.
  - Remove contamination from the housing.
  - Check the O-ring at the ribbed cover and replace if necessary; clean the sealing surfaces.
  - Fill approx. 0.6 L oil (SE-32).
  - Refit the ribbed cover. Check the tightness of the ribbed cover during operation.
7 Fault removal

7.1 Fault removal in accordance with software messages

The following chapter describes a number of possible problems that the user can partially remedy independently. If such problems occur frequently, the customer service department of Analytik Jena must always be informed.

System monitoring takes place as soon as the contrAA 800 is switched on. Any errors that occur are displayed in a window after start-up.

The user must acknowledge the error messages by clicking on the [OK] button.

ATTENTION

Danger of equipment damage!

If the errors below cannot be remedied using the corresponding fault removal notes, the customer service department of Analytik Jena must always be informed. This also applies for the repeated occurrence of individual faults.

<table>
<thead>
<tr>
<th>Error code</th>
<th>Error message</th>
</tr>
</thead>
<tbody>
<tr>
<td>3762</td>
<td>Wavelength correction incorrect!</td>
</tr>
<tr>
<td>3765</td>
<td>No correction peak found!</td>
</tr>
<tr>
<td>3766</td>
<td>Correction range exceeded!</td>
</tr>
<tr>
<td>3782</td>
<td>No neon peaks found!</td>
</tr>
<tr>
<td>3783</td>
<td>Too many neon peaks found!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>The neon or prism correction is incorrect</td>
<td>Switch the device off and on again</td>
</tr>
<tr>
<td>In the event of repeated occurrence, determine which correction is faulty in the SPECTROMETER / PARAMETERS window</td>
<td></td>
</tr>
<tr>
<td>Inform Service / create diagnosis file and send to Service</td>
<td></td>
</tr>
</tbody>
</table>

3811 No wavelength offsets stored in instrument!

<table>
<thead>
<tr>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is no production data for line offset present in the device memory</td>
<td>Contact service for line offsets</td>
</tr>
<tr>
<td>Faulty device flash memory</td>
<td>Inform service</td>
</tr>
</tbody>
</table>

1008 Invalid Parameter [100] or download system has been started!

<table>
<thead>
<tr>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invalid device parameters</td>
<td>Restart the device and software</td>
</tr>
<tr>
<td>Basic system loaded</td>
<td>If the error recurs, inform Service</td>
</tr>
<tr>
<td>Error code</td>
<td>Error message</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------------------------</td>
</tr>
<tr>
<td>2113</td>
<td>Cooling water flow too low!</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3850</td>
<td>Status: drive error!</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4011</td>
<td>Flame does not ignite – fuel/oxidant pressure may be too low or flame sensor detects light; Eliminate problem and retry!</td>
</tr>
<tr>
<td>4233</td>
<td>Cooling system sensor error (Status)</td>
</tr>
<tr>
<td>4231</td>
<td>No argon pressure (Status)</td>
</tr>
<tr>
<td>4234</td>
<td>No aux. Gas pressure (Status)</td>
</tr>
<tr>
<td>4232</td>
<td>Toroidal transformer temperature error (Status)!</td>
</tr>
<tr>
<td>4301</td>
<td>Firmware update communications error!</td>
</tr>
<tr>
<td>4302</td>
<td>Invalid checksum of firmware application!</td>
</tr>
<tr>
<td>4303</td>
<td>Invalid firmware block!</td>
</tr>
<tr>
<td>4304</td>
<td>Invalid firmware block sequence!</td>
</tr>
<tr>
<td>4305</td>
<td>Write-error firmware update!</td>
</tr>
</tbody>
</table>
7.2 Equipment faults and analytical problems

Other problems not detected by the system monitoring can also occur. Starting a measurement is possible. Such errors are usually detected on the basis of implausible measuring results (analytical problems) or are clearly visible in the equipment technology.

If the suggested solutions are not successful, customer service must be informed.

<table>
<thead>
<tr>
<th>No signal</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>Atomization unit not or insufficiently aligned in the beam path</td>
<td>In the contrAA 800 F adjust the depth via the adjustment screw</td>
</tr>
<tr>
<td>Leakage or blocking in the sample supply system</td>
<td>Check cannula and dosing tube for deposits, kinks and cracks, clean, replace if necessary</td>
</tr>
<tr>
<td>The sample is not injected correctly into the graphite tube (graphite tube technique)</td>
<td>Check pipetting, adjust autosampler</td>
</tr>
<tr>
<td>Nebulizer blocked (flame technique)</td>
<td>Check nebulizer for obstructions and clean Filter sample solution if necessary</td>
</tr>
<tr>
<td>The nebulizer gas is set too low (flame technique)</td>
<td>Optimize the nebulizer flow (air / N₂O)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The measured value is too low</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>Calibration is incorrect</td>
<td>Check the calibration solutions</td>
</tr>
<tr>
<td>Low solubility substances lead to low results</td>
<td>Optimize sample preparation</td>
</tr>
<tr>
<td>Low solubility substances are not completely digested</td>
<td></td>
</tr>
<tr>
<td>Formation of low soluble compounds in the flame (oxide, carbide, phosphate)</td>
<td>Increase the flame temperature, e.g. by changing to the acetylene/nitrous oxide flame Add &quot;release agent&quot;, such as lanthanum chloride to bind e.g. the interfering phosphate</td>
</tr>
<tr>
<td>Volatile substances escape during sample preparation</td>
<td>Optimize sample preparation</td>
</tr>
<tr>
<td>Contamination / carry-over in the cal/zero solution</td>
<td>Remedy the cause of carry-over / contamination</td>
</tr>
<tr>
<td>The sample solution is viscous / has a higher density/ different surface tension than the calibration solution</td>
<td>1. Adjust the matrix (add to calibration solutions or dilute) 2. Standard addition</td>
</tr>
<tr>
<td>Analytes evaporate too early / too late (graphite tube technique)</td>
<td>Perform standard addition</td>
</tr>
<tr>
<td>The analyte is an alkali metal (or an easily excitable atomic line)</td>
<td>Alkali effect, addition of ionization buffers ionized instead of the analyte</td>
</tr>
<tr>
<td>The peak position has slightly shifted</td>
<td>Perform wavelength correction</td>
</tr>
<tr>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>The measured value is too high</td>
<td></td>
</tr>
</tbody>
</table>
8 Transport and storage

8.1 Preparing the contrAA 800 for transport

Tools
- 4 carrying handles (included in the scope of delivery)
- Open-ended wrench 12 mm, 14 mm and 19 mm

CAUTION
Risk of injury!
The various models of the contrAA 800 device family weigh between 140 kg and 170 kg. The device must be transported by at least 4 persons using the permanently screwed in carrying handles.

CAUTION
Risk of burns at hot surfaces!
Observe the cooling down phases when preparing the contrAA 800 for transport.

ATTENTION
Unsuitable packaging material and a missing transport lock may cause damage to the device!
Only transport the contrAA 800 in its original packaging! In the contrAA 800 D insert the transport lock in the sample chamber to lock the graphite tube furnace in the parking position.

ATTENTION
Risk of damage to the device due to the cooling water freezing!
The ambient temperature may fall below freezing during transport. Before transport cooling water additive must be added to the cooling water, because the cooling water lines, graphite tube furnace and heat exchanger remain filled even during transport. The cooling water tank must be drained completely.

Work steps
1. Add 2 mL cooling water additive to the cooling water. Allow the cooling water circuit to run for approx. 5 minutes before switching off the contrAA 800 to allow the antifreeze agent to disperse.
2. Uninstall all components and accessories (→ section “Installation and commissioning” S.49). Remove the autosampler from the sample chamber.
3. contrAA 800 D:
   - Switch off the contrAA 800 from the mains switch (right). Switch back on after approx. 2 minutes.
   - In the MAIN SETTINGS window of the ASpect CS software select the FLAME technique. Initialize the system by clicking on the [INITIALIZE] button. The burner-nebulizer system is aligned in the sample chamber; the graphite tube furnace is moved to the parking position.
Exit the ASpect CS application. Switch off the PC and contrAA 800, taking the shutdown sequence into account (→ section "Switching off sequence" p. 76).

Insert the transport lock into the opening behind the sample chamber for the wedge to lock the graphite tube furnace in the parking position.

---

Fig. 68 Installation of the transport lock in the sample chamber

4. **contrAA 800 G and F:** Exit the ASpect CS application. Switch off the PC and contrAA 800, taking the shutdown sequence into account (→ section "Switching off sequence" p. 76).

5. **Drain the cooling water tank:**
   - Open the lamp chamber door (at the front, to the left of the sample chamber).
   - Unscrew the cover of the cooling water tank. Drain the water through a hose (vacuum suction principle) from both chambers of the tank. Provide a suitable collection container (V > 5 L).

6. **Flame technique:** Ensure that the drain hose of the siphon has been removed from the sample chamber. Remove the sample chamber door.

7. Empty the waste bottle; dispose of waste.

8. Close the gas supply upstream of the device connections.

9. Detach the gas connections at the rear of the contrAA 800:
   - Detach the gas connections for inert gas (argon) and, where applicable, auxiliary gas manually.
   - Detach the acetylene gas connection with a 19 mm open-ended wrench. Left hand thread!
   - Detach the compressed air gas connection by hand or with a 12 mm open-ended wrench.
   - Detach the nitrous oxide gas connection by hand or with a 14 mm open-ended wrench.

10. Undo the electrical connections.
11. Remove the four stoppers from the holes for the handles on both sides of the device and keep in a safe place.

12. Screw the four carrying handles (included in the scope of delivery) securely up to the stop into the holes.

✓ The contrAA 800 has been prepared for transport.

8.2 Ambient conditions for transport and storage

ATTENTION
Risk of damage to the device due to the cooling water freezing!

The ambient temperature may fall below freezing during transport. Before transport antifreeze must be added to the cooling water, because the cooling water lines, graphite tube furnace and heat exchanger remain filled even during transport. The cooling water tank must be drained completely.

Observe the safety instructions in section "Safety instructions, transport and commissioning" p. 14. Transport the contrAA 800 and its components carefully to prevent damage from impact or vibration. The device should be transported in such a way that major temperature fluctuations are avoided and the formation of condensate is thus prevented.

The following requirements are placed on the climatic conditions during transport and storage:

<table>
<thead>
<tr>
<th>Temperature range</th>
<th>Transport</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-40 °C to +70 °C</td>
<td>+5 °C to +40 °C</td>
</tr>
</tbody>
</table>

Max. humidity: 90 % at 40 °C

If the contrAA 800 and add-on devices are not installed immediately after delivery or are not required for a prolonged period of time, the devices should best be stored in their original packaging. A suitable desiccant should be added to the packaging to prevent damage from moisture.
9 Disposal

Atom absorption spectrometry usually creates only liquid waste. The liquid waste contains metal ions or heavy metal ions, but mostly different mineral acids which were used during sample preparation.

For safe removal of this waste, all solutions must be neutralized with a base solution, for example diluted sodium hydroxide solution. The neutralized waste must be disposed of correctly in accordance with statutory regulations.

At the end of its service life, the contrAA 800 and all its electronic components must be disposed of as electronic scrap in accordance with valid regulations.

Please dispose the Xenon short arc lamp in accordance with the country-specific regulations for high pressure radiators (short arc lamp), paying attention to the packing label supplied or contact the customer service of Analytik Jena.
10 Specification

10.1 Technical data

10.1.1 contrAA 800 data

Optical system

<table>
<thead>
<tr>
<th>Reflection optics with protective coating and optical system with lightproof encapsulation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Monochromator</strong></td>
</tr>
<tr>
<td><strong>Wavelength range</strong></td>
</tr>
<tr>
<td><strong>Spectral bandwidth</strong></td>
</tr>
<tr>
<td><strong>Grating</strong></td>
</tr>
<tr>
<td><strong>Optical bank</strong></td>
</tr>
<tr>
<td><strong>Photometer encapsulation</strong></td>
</tr>
<tr>
<td><strong>Flushed optics</strong></td>
</tr>
<tr>
<td><strong>Detector</strong></td>
</tr>
</tbody>
</table>

Lamp

Xenon short arc lamp with UV focus in hot spot mode; automatic hot spot adjustment; simultaneous drift correction; easy to replace

| **Lamp current** | 9-16 A / 8 A standby operation |
| **Mode** | DC, monitoring of burning time and ignition pulses |
| **Power supply** | Power supply unit integrated into the spectrometer |

Display

Absorbance | 0 to 3.99 |
Concentration | Value range: 5 characters (0.001 to 99999), unit freely selectable |
Energy | 0 - 65000 effective counts |
Emission | Possible in flame mode, standardized energy 0 % to 100 % |

Signal evaluation

The control software ASpect CS includes comprehensive display and storage options for measured signals and GLP-compliant logging.

time resolved | mean value, maximum absorption, integral value of absorption |
spectrally resolved | specters of 20 pixels to a maximum of 200 pixels in width |
### Power supply contrAA 800 D + G

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>230 V ~ 50 / 60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Mains fuse</td>
<td>Safety fuse 35 A, slow blow</td>
</tr>
<tr>
<td>Installation in the building</td>
<td>No automatic fuse devices!</td>
</tr>
<tr>
<td>Typical average power consumption</td>
<td>Base device: basic device with PC, monitor and autosampler: 2100 VA 2800 VA</td>
</tr>
<tr>
<td>Maximum current consumption</td>
<td>52 A for a period of 8 s or 85 A for 1 s</td>
</tr>
<tr>
<td>Output socket</td>
<td>as input socket (230 V ~, 50 / 60 Hz) For connection of accessories: PC, hydride system, potentially monitor, printer, compressor</td>
</tr>
<tr>
<td>Overvoltage category</td>
<td>II according to DIN EN 61010-1</td>
</tr>
<tr>
<td>Degree of contamination</td>
<td>2 according to DIN EN 61010-1</td>
</tr>
<tr>
<td>Safety class</td>
<td>I</td>
</tr>
<tr>
<td>Protection type</td>
<td>IP 20</td>
</tr>
</tbody>
</table>

If you connect further components besides the specified accessories to the output socket you are in danger of exceeding the permissible limit value for the drain current.

### Instrument fuses

Instrument fuse fittings (5×20 mm²) according to IEC 60127

<table>
<thead>
<tr>
<th>Fuse number</th>
<th>Type</th>
<th>Protected circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3</td>
<td>T 6.3 A/H</td>
<td>Accessory socket</td>
</tr>
<tr>
<td>F4</td>
<td>T 6.3 A/H</td>
<td>Accessory socket</td>
</tr>
<tr>
<td>F5</td>
<td>T 6.3 A/H</td>
<td>Spectrometer</td>
</tr>
<tr>
<td>F6</td>
<td>T 6.3 A/H</td>
<td>Spectrometer</td>
</tr>
<tr>
<td>F7</td>
<td>T 3.15 A/H</td>
<td>Xenon short arc lamp</td>
</tr>
<tr>
<td>F8</td>
<td>T 3.15 A/H</td>
<td>Xenon short arc lamp</td>
</tr>
</tbody>
</table>

### Furnace fuse

Type | Protected circuit
---|-------------------
TR5-T 100 mA | Graphite tube furnace

### Mains input fuse

The power supply fuses may only be changed by service engineers from Analytik Jena or by technical personnel authorized by Analytik Jena.

### gL-instrument fuse fittings (10×38 mm²) according to 60947-3.

<table>
<thead>
<tr>
<th>Fuse number</th>
<th>Type</th>
<th>Protected circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>32 A/T</td>
<td>Power supply</td>
</tr>
<tr>
<td>F2</td>
<td>32 A/T</td>
<td>Power supply</td>
</tr>
</tbody>
</table>

### Power supply contrAA 800 F

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>100-240 V ~ 50 / 60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Mains fuse</td>
<td>16 A (installation in the building)</td>
</tr>
<tr>
<td>Typical average power consumption</td>
<td>Base device: basic device with PC, monitor and autosampler: 460 VA 650 VA</td>
</tr>
</tbody>
</table>
Overvoltage category II according to DIN EN 61010-1
Degree of contamination 2 according to DIN EN 61010-1
Safety class I
Protection type IP 20

The contrAA 800 F and accessories (PC, hydride system, potentially: monitor, printer, compressor) are plugged into the 5-way socket supplied and connected through it to the mains voltage.

Instrument fuses

<table>
<thead>
<tr>
<th>Fuse number</th>
<th>Type</th>
<th>Protected circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>T 10 A/H</td>
<td>Power supply</td>
</tr>
<tr>
<td>F2</td>
<td>T 10 A/H</td>
<td>Power supply</td>
</tr>
<tr>
<td>F3</td>
<td>T 3.15 A/H</td>
<td>Xenon short arc lamp</td>
</tr>
<tr>
<td>F4</td>
<td>T 3.15 A/H</td>
<td>Xenon short arc lamp</td>
</tr>
</tbody>
</table>

Ambient conditions

<table>
<thead>
<tr>
<th></th>
<th>according to DIN ISO 90022-2:2003 / 01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosion protection</td>
<td>The device is corrosion-proof for the samples used in the analysis</td>
</tr>
<tr>
<td>Working temperature</td>
<td>+5 °C to +40 °C</td>
</tr>
<tr>
<td>Max. humidity:</td>
<td>90 % at +40 °C</td>
</tr>
<tr>
<td>Transport temperature (desiccant)</td>
<td>-40 °C to +70 °C</td>
</tr>
<tr>
<td>Air pressure</td>
<td>0.7 bar to 1.06 bar</td>
</tr>
<tr>
<td>Max. altitude</td>
<td>2000 m</td>
</tr>
</tbody>
</table>

The requirements for the environmental conditions are identical for the operation and the storage of the contrAA 800.

Dimensions and weights

The models of the contrAA 800 family have identical dimensions but different weights.

<table>
<thead>
<tr>
<th>Mass</th>
<th>contrAA 800 D 170 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>contrAA 800 G 170 kg</td>
</tr>
<tr>
<td></td>
<td>contrAA 800 F 140 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensions: (W x H x D)</th>
<th>780 mm x 625 mm x 775 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport of device</td>
<td>Only possible using the corresponding carrying handles which must be securely screwed into place</td>
</tr>
</tbody>
</table>
## 10.1.2 Minimum requirements for the control computer

<table>
<thead>
<tr>
<th>Computer</th>
<th>Graphics resolution 1024x768 pixels or better</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse / trackball</td>
<td>2 USB ports</td>
</tr>
<tr>
<td>Operating system</td>
<td>PC with Windows 7, 8.1 or 10 (32 bit or 64 bit)</td>
</tr>
</tbody>
</table>

## 10.1.3 Data for the graphite tube technique

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Liquid, Solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube type</td>
<td>IC tube (wall atomization), Omega IC tube, IC tube with 1 PIN platform, IC tube for solids. All tube types are pyro-coated.</td>
</tr>
<tr>
<td>Sample volume</td>
<td>max. 50 µL (IC tube, Omega IC tube), max. 40 µL (IC tube with 1 PIN platform), max. 3 mg (IC tube for solids)</td>
</tr>
<tr>
<td>Temperature setting</td>
<td>Temperature can be set between room temperature and 3000 °C, adjustable in steps of 1 °C</td>
</tr>
<tr>
<td>Temperature/time programming (furnace program)</td>
<td>Up to 20 steps can be freely programmed within determined limits, 0 to 999 s/step, in intervals of 1 s. Temperature increase (Ramp): 1 °C/s to 3000 °C/s linear and maximum non-linear ramps (Full Power FP / No Power NP). Control of inert gas and auxiliary gas. Inserting injection and enrichment steps. Determining the starting point for autozero and integration</td>
</tr>
<tr>
<td>Cooling water</td>
<td>integrated cooling, free from sediment 20 to 40 °C. Operation possible with tap water (σ &lt; 1 mS/cm) with added cooling water</td>
</tr>
<tr>
<td>Inert gas</td>
<td>Argon 4.8 and superior. Permitted components: Oxygen ≤ 3 ppm, Nitrogen ≤ 10 ppm, Hydrocarbon ≤ 0.5 ppm, Humidity ≤ 5 ppm. Consumption: max. 2 L/min (depending on the temperature/time program). Inlet pressure: 600 to 700 kPa</td>
</tr>
<tr>
<td></td>
<td>Additive gas: Compressed air, oil-free, grease-free, particle-free. Inlet pressure: 600 to 700 kPa</td>
</tr>
<tr>
<td>Safety circuits ensuring protection against</td>
<td>furnace heating transformer overheating, graphite tube breaking, graphite tube furnace being operated whilst open operation with insufficient of cooling water flow operation with inert gas inlet pressure being too low</td>
</tr>
</tbody>
</table>

Graphite tube furnace
Cooling

Low maintenance cooling system integrated into the spectrometer for the heat dissipation from the Xe lamp and graphite tube furnace based on the water/air heat exchanger principle.

Safety circuits

Monitoring of the cooling water circuit using two safety circuits

- Monitoring of the temperature for Xenon short arc lamp and graphite tube furnace
- Shutdown at $T \geq 60^\circ C$ (Xenon short arc lamp) or $T \geq 95^\circ C$ (graphite tube furnace)

Furnace adjustment

Software-controlled adjustment of the graphite tube furnace in the beam path

- Height: 4 to 16 mm, automated
- Depth: 0±3 mm, automated for contrAA 800 D, manual adjustment for contrAA 800 G

Autosampler AS-GF

Autosampler for adding liquid samples, complete PC control

- Sample tray
- Sample cups
  - Special cups: 108 positions
  - 100 pieces, 1.5 mL
  - 8 pieces, 5 mL
- Pipetter volume: 1 to 50 µL
- Rinse volume: 0.5 mL, number of wash cycles can be selected
- Program methods: Standard, Modifier, Dilution, Addition, Automatic enrichment
- Mass: 7.2 kg

Sampler SSA 6z / SSA 600

Solids sampler for automatic sampling with integrated micro scales (SSA 600) or solids sampler for manual sampling (SSA 6z)

- SSA 600: Solids sampler for automatic operation with integrated micro scales, optionally with dosing unit for liquid standards
- SSA 6z: Solid autosampler for manual operation

10.1.4 Data for the flame technique

Types of flame

- Acetylene air flame (standard), acetylene nitrous oxide flame for difficult-to-atomize elements such as boron, aluminum and silicon

<table>
<thead>
<tr>
<th>Types of flame</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylene/air</td>
<td>One-slit burner 50 mm, coded (standard) One-slit burner 100 mm, coded (optional)</td>
</tr>
<tr>
<td>Acetylene/nitrous oxide</td>
<td>One-slit burner 50 mm, coded</td>
</tr>
</tbody>
</table>

Oxidant

<table>
<thead>
<tr>
<th>Description</th>
<th>Compressed air and nitrous oxide (N₂O)</th>
<th>Inlet pressure: 400 to 600 kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed air</td>
<td>400 to 600 NL/h</td>
<td>320 to 480 NL/h</td>
</tr>
<tr>
<td>N₂O</td>
<td>3 levels: 75 / 150 / 225 NL/h</td>
<td>3 levels: 60 / 120 / 180 NL/h</td>
</tr>
</tbody>
</table>
**contrAA 800 Specification**

### Fuel gas

<table>
<thead>
<tr>
<th>Component</th>
<th>Inlet pressure:</th>
<th>Consumption:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylene</td>
<td>80 to 160 kPa</td>
<td>40 to 315 NL/h</td>
</tr>
</tbody>
</table>

### Nebulizer

**Generation of the sample aerosol**

- **Mode of action**: Pneumatic radial clearance nebulizer
- **Material**: Platinum/rhodium cannula, PEEK nozzle
- **Nebulizer**: Throughput rate 4 to 6 mL/min

### Siphon

**Siphon with integrated monitoring of the correct filling level (800 mm water column)**

- **Mode of action**: Float, corrosion proof

### Burner adjustment

**Software-controlled adjustment of the burner in the beam path**

- **Height**: 4 to 16 mm, automated
- **Depth**: 0±3 mm, automated for contrAA 800 D
  - manual adjustment for contrAA 800 F
- **Rotation**: 0° to 90°, manual

### Safety circuits

**Monitoring of the burner/nebulizer system**

- **Monitoring of**: Burner and burner type, Fuel gas pressure, Inlet pressure oxidant (air and N₂O), Siphon filling level, Flame, Level of the waste bottle

### 10.1.5 Data for the flame technology accessories

#### Autosampler AS-F

**Autosampler without dilution function, completely PC-controlled**

- **Sample tray 139/15**
  - Sample cups: 129 pieces, 15 mL
  - Special cups: 10 pieces, 50 mL
- **Sample tray 54/50**
  - Sample cups: 54 pieces, 50 mL
- **Power supply**: Via AAS basic instrument
- **Wash bottle**: 2 L
- **Mass**: 6.5 kg
### Autosampler AS-FD

**Autosampler with dilution function, completely PC-controlled**

<table>
<thead>
<tr>
<th>Sample tray 139/15</th>
<th>129 pieces, 15 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample cups</td>
<td>Special cups</td>
</tr>
<tr>
<td>10 pieces, 50 mL</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample tray 54/50</th>
<th>54 pieces, 50 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample cups</td>
<td>Dosing unit in the Fluidik module</td>
</tr>
<tr>
<td>5 mL</td>
<td>5 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power supply</th>
<th>Via AAS basic instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wash bottle</td>
<td>2 L</td>
</tr>
<tr>
<td>Bottle for diluent</td>
<td>2 L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass (total)</th>
<th>10.0 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampler</td>
<td>6.5 kg</td>
</tr>
<tr>
<td>Fluidik module</td>
<td>3.5 kg</td>
</tr>
</tbody>
</table>

### Injection module

**Model: SFS 6 (Segmented Flow Star), PC-controlled**

Guaranteed stable burner conditions through continuous flushing and constant temperature

<table>
<thead>
<tr>
<th>Sample volume for individual analysis</th>
<th>300 μL (minimum volume)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Power supply</th>
<th>Via AAS basic instrument</th>
</tr>
</thead>
</table>

### Piston compressor

**Model: PLANET L-S50-15 Standard compressed air supply in flame technique**

<table>
<thead>
<tr>
<th>Tank capacity</th>
<th>15 L</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dimensions (diameter, height)</th>
<th>Ø 400 mm, 490 mm</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Power supply</th>
<th>230 V, 50 Hz or 230 V, 60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>27 kg</td>
</tr>
<tr>
<td>max. operating pressure</td>
<td>800 kPa</td>
</tr>
</tbody>
</table>

### Scraper

**Automatic burner head cleaning for nitrous oxide flame, PC-controlled**

<table>
<thead>
<tr>
<th>Power supply</th>
<th>Via AAS basic instrument</th>
</tr>
</thead>
</table>

### Hydride systems

**Chemical hydride generation in flow injection and batch mode; devices with modular design for easy adaptation to changed requirements**

<table>
<thead>
<tr>
<th>Models</th>
<th>HS 60 modular, HS 55 modular, HS 50</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Techniques</th>
<th>HydrEA, Hg cold vapor technique and hydride technique</th>
</tr>
</thead>
</table>

For additional information see instruction manual for hydride systems
10.2 Guidelines and standards

Safety class and safety type

The contrAA 800 belongs to safety class I.

The housing has safety type IP 20.

Device safety

The contrAA 800 conforms to the safety standards
- DIN EN 61010-1 (VDE 0411 T.1; IEC 61010-1)
- DIN EN 61010-2-061 (IEC 61010-2-061)

EMC compatibility

The contrAA 800 has been checked for radio interference protection, interference resistance and interference emission in accordance with class A of standard DIN EN 55011 and meets the requirements according to
- DIN EN 61326

Environmental compatibility

The contrAA 800 has been tested for environmental compatibility and fulfills the requirements stipulated by
- DIN ISO 9022-3:2000
- DIN ISO 9022-32-03-0
- DIN ISO 9022-2:2003/01

EC directives

The contrAA 800 is built and tested according to standards that fulfill the requirements stipulated by the EU directives 2014/35/EC and 2014/30/EU.

Directives for China

The device contains restricted substances (according to directive "Management Methods for the Restriction of the Use of Hazardous Substances in Electrical and Electronic Products"). Analytik Jena AG guarantees, that those hazardous substances may not leak out during the next 25 years when the device is used in accordance with its intended purpose.

Each device leaves the manufacturer in a pristine and technically safe state. To maintain this condition and to ensure safe operation, the operator must strictly observe the safety and operating instructions contained in this manual. For accessories which have also been supplied, and system components from other manufacturers, their operating instructions should be referred to.
## 11 Abbreviations / terminology

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA</td>
<td>Electrothermal atomizer</td>
</tr>
<tr>
<td>BZS</td>
<td>Burner-nebulizer system</td>
</tr>
<tr>
<td>TZP</td>
<td>Temperature/time program / furnace program</td>
</tr>
<tr>
<td>EA Operation</td>
<td>Operation with electrothermal atomizer</td>
</tr>
<tr>
<td>Analytical line</td>
<td>A spectral line defined by an analyzing instruction</td>
</tr>
<tr>
<td>Analyte</td>
<td>Element to be analyzed</td>
</tr>
<tr>
<td>Atomizing</td>
<td>Sample is vaporized to produce atoms</td>
</tr>
<tr>
<td>Clean-out</td>
<td>Clean out of the graphite tube furnace to a temperature at which all sample residues in the furnace have been evaporated (i.e. furnace cleaning)</td>
</tr>
<tr>
<td>AZ</td>
<td>Autozero during analysis</td>
</tr>
<tr>
<td>Limit of quantitation</td>
<td>The minimum weight (concentration) of the element to be analyzed that can be determined with a defined precision. See also detection limit</td>
</tr>
<tr>
<td>Reference solution</td>
<td>Solution which can contain the analyte in a known concentration, and according to requirements, the chemicals used for creating the sample solution, in addition it may contain the matrix components which influence the measurements and which are also contained in the sample solution</td>
</tr>
<tr>
<td>Blank value solution</td>
<td>Solution which contains the chemicals which are used for creating the but does not contain the sample matrix.</td>
</tr>
<tr>
<td>Characteristic mass</td>
<td>Mass of the element to be analyzed which yields an absorbance of $A = 0.0044$ (corresponds to 1 % absorption); analog: “Characteristic concentration).</td>
</tr>
<tr>
<td>Formatting</td>
<td>Heating the graphite tube furnace via several predefined temperature set-points to the maximum temperature. The actual temperatures are measured and by comparing rated and actual temperatures, a correction factor for controlling the graphite tube is calculated. Function 2: A new graphite tube is “burned in”.</td>
</tr>
<tr>
<td>ID/Wt</td>
<td>Identity and Weight. Identity data and weight/mass of a sample</td>
</tr>
<tr>
<td>Ionization buffer</td>
<td>Addition which increases the concentration of free electrons in the sample in order to reduce the degree of ionization in the analyte</td>
</tr>
<tr>
<td>Continuous radiator</td>
<td>Radiator, whose radiation is continually distributed over a large wavelength range In the contrAA 800 a Xenon short arc lamp is used as excitation source</td>
</tr>
<tr>
<td>Empty value solution</td>
<td>Solution which contains the chemicals which are used for creating the sample solution, and also the components which influence the measurement, in the same or similar concentration as the sample to be analyzed. No analyte is added to this solution.</td>
</tr>
<tr>
<td>Methods</td>
<td>A method contains all data which are required for analysis of samples of a specific element, i.e., spectrometer, atomizer, calibration, sample, autosampler and QC settings, if necessary, also the settings for the QC charts and the results windows (provided these parameters have been considered in the method). Methods can be saved and reloaded. When changing from one method to another, all settings are transferred to the new analysis task.</td>
</tr>
<tr>
<td>Measuring solution</td>
<td>Any solution which is added directly to the measurement.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Measuring program</td>
<td>A collection of methods which requires compatible analysis conditions (i.e., the same analysis technique, the same autosampler, etc.) and which are put together in a specific order. A measurement program is used to analyze a sample sequence (semi) automatically for different elements &quot;simultaneously&quot;. (&quot;Simultaneously&quot; means that all samples are analyzed first for one element and then for the next element). A measurement program can also consist of only one method.</td>
</tr>
<tr>
<td>Modifier</td>
<td>Addition for changing the physical and chemical characteristics of samples.</td>
</tr>
<tr>
<td>Detection limit</td>
<td>The weight (concentration) of the element to be analyzed that can be detected with a defined statistical certainty. See also detection limit</td>
</tr>
<tr>
<td>Zero solution</td>
<td>Solution which is used to set the zero point. It can be the solvent, the blank value solution or the empty value solution.</td>
</tr>
<tr>
<td>Precision</td>
<td>Measure of the statistical deviation of the measurement values from mean (standard deviation, relative standard deviation)</td>
</tr>
<tr>
<td>Sample solution</td>
<td>Solution which originates after treating the sample to be analyzed according to the analysis instructions. If additional processing steps are not required, this is now the measuring solution.</td>
</tr>
<tr>
<td>Pyrolysis</td>
<td>Greatest possible removal of accompanying substances from the sample by heating in graphite tube furnace, without evaporating any of the analyte.</td>
</tr>
<tr>
<td>QC</td>
<td>Quality control. Concerned with samples and processes for monitoring the quality of the analysis over time.</td>
</tr>
<tr>
<td>Serial precision</td>
<td>Precision of several measurements over several days (e.g., 20 part determination in medicine: 20 days, each with 20 measurements)</td>
</tr>
<tr>
<td>Statistics series</td>
<td>For calculating the statistical accuracy of an analysis, the individual sample is analyzed for the current element several times in a row.</td>
</tr>
<tr>
<td>Stock solution</td>
<td>Solution of a suitable and specific composition (diluent, acid type, acidic content, etc.) which contains the analyte in high and known concentrations. The stock solution is used for producing reference solutions.</td>
</tr>
<tr>
<td>Stock solution (Note)</td>
<td>See stock solution</td>
</tr>
<tr>
<td>Background compensation</td>
<td>Evaluation of measurement value with no background. In the contrAA 800 the background compensation is simultaneous.</td>
</tr>
<tr>
<td>Background measurement</td>
<td>Measurement of the spectral background in the environment or under the analysis line.</td>
</tr>
</tbody>
</table>
12 Index

A

AAS
   physical principle 29
Acetylene
   safety instructions 17
Air filter
   Replace 92
Analysis
   problems 122
AS-F, AS-FD
   function 45
   install 71
   maintain 116
   replace the canula 117
   replace the dosing syringe 114
   Technical data 133
   uninstall 73
AS-GF
   adjust 64
   function 40
   install 61
   maintain 111
   Replace the dosing syringe 114
   Technical data 132
   uninstall 65
ASpect CS
   install 55
   Atomization technique
      align 93
   Atomizing technique 30

B

Beam path
   align atomizer 93
Burner
   clean burner detection 110
   cleaning 106
   flame types 44
   install 69, 71
   replace 75
   types 44
Burner detection
   clean 110
Burner head cleaner See Scraper
Burner-nebulizer
   Install 68
Burner-nebulizer system
   align 93
   assemble 109
   clean 103
   dismantle 105
   function 42

C

Canula
   replace 117
Compressed air supply See Piston
   compressor
Compressed gas container 17
Computer 131
Continuous radiator
   disposal 82
   function 33
   replace 82
contrAA 800 D/F/G 30
Cooling water
   Change 89
   circuit 33
   clean tank 89
   drain tank 125
   filling 54
   prepare for transport 125
   reactivate contrAA 800 after safety cutout 88
   replenish 89

D

Decontamination measures 19
Detector 32
Device layout 24
Device safety 135
Disposal 127
Dosing syringe
   replace 114

E

Electrode See graphite electrode
EMC compatibility 135
Emergency
   behavior 19
Environmental compatibility 135
Environmental conditions 130
Equipment fault 120
Error message
   ASpect CS 120
Evaluation unit 32
Exhaust unit 24
F
Fault removal 120
Flame sampler See AS-F, AS-FD
Flame technique
connections in the sample chamber 66
function 41
install 66
maintain 103
technical data 132
Flame tube technique
configuration in ASpect CS 67
Fluidik module
install 72
Function
autosampler AS-GF 40
autosamplers AS-F, AS-FD 45
burner-nebulizer system 42
continuous radiator 33
detector 32
evaluation unit 32
flame technique 41
furnace camera 39
graphite tube technique 34
injection module SFS 6 47
optics 31
piston compressor 47
radiation sensor 39
radiation source 29
scraper 48
Furnace See Graphite tube furnace
Furnace camera 39
Furnace jacket
replace 97
Furnace windows
clean 95
Fuse
Change 81
Fuses
technical data 129, 130

G
Gas automatic 42
Gas supply
check for leaks 93
flame technique 23
graphite tube technique 23
install 53, 69, 71
uninstall 125
Graphite electrode
replace 97
Graphite sampler See AS-GF
Graphite tube
clean 61
formatting 60
Inserting into the furnace 58
maintain 97
Models 38
Graphite tube furnace See Graphite tube furnace
align 93
cleaning the furnace windows 95
cleaning the surface 96
connection for gas, cooling water 56
function 35
gas flows in the furnace 36
maintain 95
replace the electrode 97
replace the furnace jacket 97
Graphite tube technique
configuring in ASpect CS 56
connections in the sample chamber 56
function 34
install 55
maintain 95
Graphite tube technology
technical data 131
Guidelines 135

H
Humidity 130
HydrEA
cleaning the graphite tube 61
hydride system 48
preparing the contrAA 800 63
Hydride system 48, See Hydride system

I
Injection module See SFS 6
Installation
autosampler AS-GF 61
autosamplers AS-F, AS-FD 71
flame technique 66
gas supply: 53
graphite tube technique 55
injection module SFS 6 74
interfaces 49
mains connection 50
scraper 75
Installation site 21
Interface 49

L
Lamp See Continuous radiator
Liability 10
Liquid gas system 17
Index

Mains connection 21, 22
install 50
Maintenance
align atomization unit 93
autosampler AS-GF 111
autosamplers AS-F, AS-FD 116
check gas connection 93
Cleaning the sample chamber 82
cooling water circuit 88, 89
flame technique 103
graphite tube technique 95
overview 79
piston compressor 119
replacing the air filter 92
replacing the continuous radiator 82
Mixing chamber
clean 108
Monochromator 31

Nebulizer
adjust 110
Clean 108

Operating temperature 21
Optics
function 31
technical data 128
ozone 17

Personnel 14
Piston compressor
function 47
maintain 119
technical data 134
Planet L-SS0-15 See Piston compressor
Power supply 21
technical data 129
Problems
analytic 122
Protection type 135

Radiation sensor 39
Radiation source 29
Rating plate 52
Repair 19
Maintenance 81

Safety class 135
Safety cutout 88
Safety instructions
electrical equipment 15
Exhaust unit 17
Gas supply 17
graphite tube/flame technique 16
hazardous substances 18
operation 15
protection against explosion 15
service and repair 19
transport 14
Sampling compartment
Clean 82
Scraper
function 48
install 75
Serial number 52
SFS 6
function 47
install 74
technical data 134
uninstall 74
Short arc lamp See Continuous radiator
Siphon
clean 108
install 69, 71
Software See ASpect CS
Solid autosampler 41
Solvents
Safety instructions 18
Space requirement 24
SSA 600, SSA 6z 41
Storage 124
Switching off sequence 77
Switching on sequence 76
Symbols
Device 11
Manual 9

Take the graphite tube out of the furnace 59
Technical data 128
AS-F, AS-FD automatic sampler 133
AS-GF automatic sampler 132
Computer 131
flame technique 132
graphite tube technique 131
injection module SFS 6 134
optics 128
piston compressor 134
Power supply 129
Temperature
  Operation  21
Transport  124
Transport lock
  install  124
  remove  53
Types of flame  44

U
Use  10
User manual conventions  9

UV radiation
  prevent escaping  93

W
Warranty  10

X
Xenon short arc lamp  See Continuous radiator